Copied to
clipboard

G = C2×D4.7D4order 128 = 27

Direct product of C2 and D4.7D4

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C2×D4.7D4, C24.102D4, D4.38(C2×D4), C4⋊C4.4C23, Q8.38(C2×D4), C4.38C22≀C2, (C2×D4).293D4, (C2×Q8).228D4, (C22×Q16)⋊6C2, C4.38(C22×D4), C22⋊C857C22, (C2×C8).299C23, (C2×C4).220C24, (C2×Q16)⋊37C22, C23.851(C2×D4), (C22×C4).713D4, C22⋊Q860C22, (C2×Q8).17C23, D4⋊C462C22, Q8⋊C474C22, (C2×SD16)⋊68C22, (C22×SD16)⋊18C2, (C2×D4).379C23, C22.87(C4○D8), C22.117C22≀C2, (C22×C4).958C23, (C22×C8).335C22, (C23×C4).540C22, C22.480(C22×D4), (C22×D4).561C22, (C22×Q8).261C22, C22.100(C8.C22), C2.8(C2×C4○D8), (C2×C22⋊C8)⋊24C2, (C2×C22⋊Q8)⋊52C2, (C2×D4⋊C4)⋊21C2, C2.9(C2×C8.C22), (C2×Q8⋊C4)⋊36C2, C2.38(C2×C22≀C2), (C2×C4).1094(C2×D4), (C2×C4⋊C4).581C22, (C22×C4○D4).23C2, (C2×C4○D4).296C22, SmallGroup(128,1733)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C2×D4.7D4
C1C2C22C2×C4C22×C4C23×C4C22×C4○D4 — C2×D4.7D4
C1C2C2×C4 — C2×D4.7D4
C1C23C23×C4 — C2×D4.7D4
C1C2C2C2×C4 — C2×D4.7D4

Generators and relations for C2×D4.7D4
 G = < a,b,c,d,e | a2=b4=c2=d4=1, e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=dbd-1=ebe-1=b-1, dcd-1=ece-1=bc, ede-1=d-1 >

Subgroups: 716 in 380 conjugacy classes, 116 normal (28 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, Q16, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C24, C24, C22⋊C8, D4⋊C4, Q8⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22⋊Q8, C22⋊Q8, C22×C8, C2×SD16, C2×SD16, C2×Q16, C2×Q16, C23×C4, C23×C4, C22×D4, C22×D4, C22×Q8, C2×C4○D4, C2×C4○D4, C2×C22⋊C8, C2×D4⋊C4, C2×Q8⋊C4, D4.7D4, C2×C22⋊Q8, C22×SD16, C22×Q16, C22×C4○D4, C2×D4.7D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22≀C2, C4○D8, C8.C22, C22×D4, D4.7D4, C2×C22≀C2, C2×C4○D8, C2×C8.C22, C2×D4.7D4

Smallest permutation representation of C2×D4.7D4
On 64 points
Generators in S64
(1 17)(2 18)(3 19)(4 20)(5 56)(6 53)(7 54)(8 55)(9 16)(10 13)(11 14)(12 15)(21 33)(22 34)(23 35)(24 36)(25 32)(26 29)(27 30)(28 31)(37 51)(38 52)(39 49)(40 50)(41 47)(42 48)(43 45)(44 46)(57 63)(58 64)(59 61)(60 62)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 4)(2 3)(5 7)(9 12)(10 11)(13 14)(15 16)(17 20)(18 19)(21 22)(23 24)(25 28)(26 27)(29 30)(31 32)(33 34)(35 36)(38 40)(42 44)(46 48)(50 52)(54 56)(58 60)(62 64)
(1 60 11 56)(2 59 12 55)(3 58 9 54)(4 57 10 53)(5 17 62 14)(6 20 63 13)(7 19 64 16)(8 18 61 15)(21 41 28 37)(22 44 25 40)(23 43 26 39)(24 42 27 38)(29 49 35 45)(30 52 36 48)(31 51 33 47)(32 50 34 46)
(1 46 3 48)(2 45 4 47)(5 25 7 27)(6 28 8 26)(9 52 11 50)(10 51 12 49)(13 37 15 39)(14 40 16 38)(17 44 19 42)(18 43 20 41)(21 61 23 63)(22 64 24 62)(29 53 31 55)(30 56 32 54)(33 59 35 57)(34 58 36 60)

G:=sub<Sym(64)| (1,17)(2,18)(3,19)(4,20)(5,56)(6,53)(7,54)(8,55)(9,16)(10,13)(11,14)(12,15)(21,33)(22,34)(23,35)(24,36)(25,32)(26,29)(27,30)(28,31)(37,51)(38,52)(39,49)(40,50)(41,47)(42,48)(43,45)(44,46)(57,63)(58,64)(59,61)(60,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,4)(2,3)(5,7)(9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,22)(23,24)(25,28)(26,27)(29,30)(31,32)(33,34)(35,36)(38,40)(42,44)(46,48)(50,52)(54,56)(58,60)(62,64), (1,60,11,56)(2,59,12,55)(3,58,9,54)(4,57,10,53)(5,17,62,14)(6,20,63,13)(7,19,64,16)(8,18,61,15)(21,41,28,37)(22,44,25,40)(23,43,26,39)(24,42,27,38)(29,49,35,45)(30,52,36,48)(31,51,33,47)(32,50,34,46), (1,46,3,48)(2,45,4,47)(5,25,7,27)(6,28,8,26)(9,52,11,50)(10,51,12,49)(13,37,15,39)(14,40,16,38)(17,44,19,42)(18,43,20,41)(21,61,23,63)(22,64,24,62)(29,53,31,55)(30,56,32,54)(33,59,35,57)(34,58,36,60)>;

G:=Group( (1,17)(2,18)(3,19)(4,20)(5,56)(6,53)(7,54)(8,55)(9,16)(10,13)(11,14)(12,15)(21,33)(22,34)(23,35)(24,36)(25,32)(26,29)(27,30)(28,31)(37,51)(38,52)(39,49)(40,50)(41,47)(42,48)(43,45)(44,46)(57,63)(58,64)(59,61)(60,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,4)(2,3)(5,7)(9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,22)(23,24)(25,28)(26,27)(29,30)(31,32)(33,34)(35,36)(38,40)(42,44)(46,48)(50,52)(54,56)(58,60)(62,64), (1,60,11,56)(2,59,12,55)(3,58,9,54)(4,57,10,53)(5,17,62,14)(6,20,63,13)(7,19,64,16)(8,18,61,15)(21,41,28,37)(22,44,25,40)(23,43,26,39)(24,42,27,38)(29,49,35,45)(30,52,36,48)(31,51,33,47)(32,50,34,46), (1,46,3,48)(2,45,4,47)(5,25,7,27)(6,28,8,26)(9,52,11,50)(10,51,12,49)(13,37,15,39)(14,40,16,38)(17,44,19,42)(18,43,20,41)(21,61,23,63)(22,64,24,62)(29,53,31,55)(30,56,32,54)(33,59,35,57)(34,58,36,60) );

G=PermutationGroup([[(1,17),(2,18),(3,19),(4,20),(5,56),(6,53),(7,54),(8,55),(9,16),(10,13),(11,14),(12,15),(21,33),(22,34),(23,35),(24,36),(25,32),(26,29),(27,30),(28,31),(37,51),(38,52),(39,49),(40,50),(41,47),(42,48),(43,45),(44,46),(57,63),(58,64),(59,61),(60,62)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,4),(2,3),(5,7),(9,12),(10,11),(13,14),(15,16),(17,20),(18,19),(21,22),(23,24),(25,28),(26,27),(29,30),(31,32),(33,34),(35,36),(38,40),(42,44),(46,48),(50,52),(54,56),(58,60),(62,64)], [(1,60,11,56),(2,59,12,55),(3,58,9,54),(4,57,10,53),(5,17,62,14),(6,20,63,13),(7,19,64,16),(8,18,61,15),(21,41,28,37),(22,44,25,40),(23,43,26,39),(24,42,27,38),(29,49,35,45),(30,52,36,48),(31,51,33,47),(32,50,34,46)], [(1,46,3,48),(2,45,4,47),(5,25,7,27),(6,28,8,26),(9,52,11,50),(10,51,12,49),(13,37,15,39),(14,40,16,38),(17,44,19,42),(18,43,20,41),(21,61,23,63),(22,64,24,62),(29,53,31,55),(30,56,32,54),(33,59,35,57),(34,58,36,60)]])

38 conjugacy classes

class 1 2A···2G2H···2M4A···4H4I4J4K4L4M4N4O4P8A···8H
order12···22···24···4444444448···8
size11···14···42···2444488884···4

38 irreducible representations

dim111111111222224
type+++++++++++++-
imageC1C2C2C2C2C2C2C2C2D4D4D4D4C4○D8C8.C22
kernelC2×D4.7D4C2×C22⋊C8C2×D4⋊C4C2×Q8⋊C4D4.7D4C2×C22⋊Q8C22×SD16C22×Q16C22×C4○D4C22×C4C2×D4C2×Q8C24C22C22
# reps111181111344182

Matrix representation of C2×D4.7D4 in GL5(𝔽17)

160000
01000
00100
000160
000016
,
10000
016000
001600
00001
000160
,
160000
016000
00100
00001
00010
,
160000
00200
08000
000143
00033
,
10000
001500
08000
000125
00055

G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,16],[1,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,1,0],[16,0,0,0,0,0,16,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0],[16,0,0,0,0,0,0,8,0,0,0,2,0,0,0,0,0,0,14,3,0,0,0,3,3],[1,0,0,0,0,0,0,8,0,0,0,15,0,0,0,0,0,0,12,5,0,0,0,5,5] >;

C2×D4.7D4 in GAP, Magma, Sage, TeX

C_2\times D_4._7D_4
% in TeX

G:=Group("C2xD4.7D4");
// GroupNames label

G:=SmallGroup(128,1733);
// by ID

G=gap.SmallGroup(128,1733);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,758,352,2804,1411,172]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^4=1,e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=d*b*d^-1=e*b*e^-1=b^-1,d*c*d^-1=e*c*e^-1=b*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽