extension | φ:Q→Aut N | d | ρ | Label | ID |
C10.1(C2×D4) = C20⋊2Q8 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C10 | 160 | | C10.1(C2xD4) | 160,90 |
C10.2(C2×D4) = C4×D20 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C10 | 80 | | C10.2(C2xD4) | 160,94 |
C10.3(C2×D4) = C20⋊4D4 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C10 | 80 | | C10.3(C2xD4) | 160,95 |
C10.4(C2×D4) = C4.D20 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C10 | 80 | | C10.4(C2xD4) | 160,96 |
C10.5(C2×D4) = C22⋊D20 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C10 | 40 | | C10.5(C2xD4) | 160,103 |
C10.6(C2×D4) = C22.D20 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C10 | 80 | | C10.6(C2xD4) | 160,107 |
C10.7(C2×D4) = C4⋊D20 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C10 | 80 | | C10.7(C2xD4) | 160,116 |
C10.8(C2×D4) = D10⋊2Q8 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C10 | 80 | | C10.8(C2xD4) | 160,118 |
C10.9(C2×D4) = C2×C40⋊C2 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C10 | 80 | | C10.9(C2xD4) | 160,123 |
C10.10(C2×D4) = C2×D40 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C10 | 80 | | C10.10(C2xD4) | 160,124 |
C10.11(C2×D4) = D40⋊7C2 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C10 | 80 | 2 | C10.11(C2xD4) | 160,125 |
C10.12(C2×D4) = C2×Dic20 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C10 | 160 | | C10.12(C2xD4) | 160,126 |
C10.13(C2×D4) = C8⋊D10 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C10 | 40 | 4+ | C10.13(C2xD4) | 160,129 |
C10.14(C2×D4) = C8.D10 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C10 | 80 | 4- | C10.14(C2xD4) | 160,130 |
C10.15(C2×D4) = C2×C4⋊Dic5 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C10 | 160 | | C10.15(C2xD4) | 160,146 |
C10.16(C2×D4) = Dic5.14D4 | φ: C2×D4/D4 → C2 ⊆ Aut C10 | 80 | | C10.16(C2xD4) | 160,99 |
C10.17(C2×D4) = D5×C22⋊C4 | φ: C2×D4/D4 → C2 ⊆ Aut C10 | 40 | | C10.17(C2xD4) | 160,101 |
C10.18(C2×D4) = Dic5⋊4D4 | φ: C2×D4/D4 → C2 ⊆ Aut C10 | 80 | | C10.18(C2xD4) | 160,102 |
C10.19(C2×D4) = D10.12D4 | φ: C2×D4/D4 → C2 ⊆ Aut C10 | 80 | | C10.19(C2xD4) | 160,104 |
C10.20(C2×D4) = D10⋊D4 | φ: C2×D4/D4 → C2 ⊆ Aut C10 | 80 | | C10.20(C2xD4) | 160,105 |
C10.21(C2×D4) = Dic5.5D4 | φ: C2×D4/D4 → C2 ⊆ Aut C10 | 80 | | C10.21(C2xD4) | 160,106 |
C10.22(C2×D4) = C20⋊Q8 | φ: C2×D4/D4 → C2 ⊆ Aut C10 | 160 | | C10.22(C2xD4) | 160,109 |
C10.23(C2×D4) = D5×C4⋊C4 | φ: C2×D4/D4 → C2 ⊆ Aut C10 | 80 | | C10.23(C2xD4) | 160,112 |
C10.24(C2×D4) = D20⋊8C4 | φ: C2×D4/D4 → C2 ⊆ Aut C10 | 80 | | C10.24(C2xD4) | 160,114 |
C10.25(C2×D4) = D10.13D4 | φ: C2×D4/D4 → C2 ⊆ Aut C10 | 80 | | C10.25(C2xD4) | 160,115 |
C10.26(C2×D4) = D10⋊Q8 | φ: C2×D4/D4 → C2 ⊆ Aut C10 | 80 | | C10.26(C2xD4) | 160,117 |
C10.27(C2×D4) = D5×D8 | φ: C2×D4/D4 → C2 ⊆ Aut C10 | 40 | 4+ | C10.27(C2xD4) | 160,131 |
C10.28(C2×D4) = D8⋊D5 | φ: C2×D4/D4 → C2 ⊆ Aut C10 | 40 | 4 | C10.28(C2xD4) | 160,132 |
C10.29(C2×D4) = D8⋊3D5 | φ: C2×D4/D4 → C2 ⊆ Aut C10 | 80 | 4- | C10.29(C2xD4) | 160,133 |
C10.30(C2×D4) = D5×SD16 | φ: C2×D4/D4 → C2 ⊆ Aut C10 | 40 | 4 | C10.30(C2xD4) | 160,134 |
C10.31(C2×D4) = D40⋊C2 | φ: C2×D4/D4 → C2 ⊆ Aut C10 | 40 | 4+ | C10.31(C2xD4) | 160,135 |
C10.32(C2×D4) = SD16⋊D5 | φ: C2×D4/D4 → C2 ⊆ Aut C10 | 80 | 4- | C10.32(C2xD4) | 160,136 |
C10.33(C2×D4) = SD16⋊3D5 | φ: C2×D4/D4 → C2 ⊆ Aut C10 | 80 | 4 | C10.33(C2xD4) | 160,137 |
C10.34(C2×D4) = D5×Q16 | φ: C2×D4/D4 → C2 ⊆ Aut C10 | 80 | 4- | C10.34(C2xD4) | 160,138 |
C10.35(C2×D4) = Q16⋊D5 | φ: C2×D4/D4 → C2 ⊆ Aut C10 | 80 | 4 | C10.35(C2xD4) | 160,139 |
C10.36(C2×D4) = Q8.D10 | φ: C2×D4/D4 → C2 ⊆ Aut C10 | 80 | 4+ | C10.36(C2xD4) | 160,140 |
C10.37(C2×D4) = D4×Dic5 | φ: C2×D4/D4 → C2 ⊆ Aut C10 | 80 | | C10.37(C2xD4) | 160,155 |
C10.38(C2×D4) = C2×C10.D4 | φ: C2×D4/C23 → C2 ⊆ Aut C10 | 160 | | C10.38(C2xD4) | 160,144 |
C10.39(C2×D4) = C20.48D4 | φ: C2×D4/C23 → C2 ⊆ Aut C10 | 80 | | C10.39(C2xD4) | 160,145 |
C10.40(C2×D4) = C2×D10⋊C4 | φ: C2×D4/C23 → C2 ⊆ Aut C10 | 80 | | C10.40(C2xD4) | 160,148 |
C10.41(C2×D4) = C4×C5⋊D4 | φ: C2×D4/C23 → C2 ⊆ Aut C10 | 80 | | C10.41(C2xD4) | 160,149 |
C10.42(C2×D4) = C23.23D10 | φ: C2×D4/C23 → C2 ⊆ Aut C10 | 80 | | C10.42(C2xD4) | 160,150 |
C10.43(C2×D4) = C20⋊7D4 | φ: C2×D4/C23 → C2 ⊆ Aut C10 | 80 | | C10.43(C2xD4) | 160,151 |
C10.44(C2×D4) = C2×D4⋊D5 | φ: C2×D4/C23 → C2 ⊆ Aut C10 | 80 | | C10.44(C2xD4) | 160,152 |
C10.45(C2×D4) = D4.D10 | φ: C2×D4/C23 → C2 ⊆ Aut C10 | 40 | 4 | C10.45(C2xD4) | 160,153 |
C10.46(C2×D4) = C2×D4.D5 | φ: C2×D4/C23 → C2 ⊆ Aut C10 | 80 | | C10.46(C2xD4) | 160,154 |
C10.47(C2×D4) = C23.18D10 | φ: C2×D4/C23 → C2 ⊆ Aut C10 | 80 | | C10.47(C2xD4) | 160,156 |
C10.48(C2×D4) = C20.17D4 | φ: C2×D4/C23 → C2 ⊆ Aut C10 | 80 | | C10.48(C2xD4) | 160,157 |
C10.49(C2×D4) = C23⋊D10 | φ: C2×D4/C23 → C2 ⊆ Aut C10 | 40 | | C10.49(C2xD4) | 160,158 |
C10.50(C2×D4) = C20⋊2D4 | φ: C2×D4/C23 → C2 ⊆ Aut C10 | 80 | | C10.50(C2xD4) | 160,159 |
C10.51(C2×D4) = Dic5⋊D4 | φ: C2×D4/C23 → C2 ⊆ Aut C10 | 80 | | C10.51(C2xD4) | 160,160 |
C10.52(C2×D4) = C20⋊D4 | φ: C2×D4/C23 → C2 ⊆ Aut C10 | 80 | | C10.52(C2xD4) | 160,161 |
C10.53(C2×D4) = C2×Q8⋊D5 | φ: C2×D4/C23 → C2 ⊆ Aut C10 | 80 | | C10.53(C2xD4) | 160,162 |
C10.54(C2×D4) = C20.C23 | φ: C2×D4/C23 → C2 ⊆ Aut C10 | 80 | 4 | C10.54(C2xD4) | 160,163 |
C10.55(C2×D4) = C2×C5⋊Q16 | φ: C2×D4/C23 → C2 ⊆ Aut C10 | 160 | | C10.55(C2xD4) | 160,164 |
C10.56(C2×D4) = Dic5⋊Q8 | φ: C2×D4/C23 → C2 ⊆ Aut C10 | 160 | | C10.56(C2xD4) | 160,165 |
C10.57(C2×D4) = D10⋊3Q8 | φ: C2×D4/C23 → C2 ⊆ Aut C10 | 80 | | C10.57(C2xD4) | 160,167 |
C10.58(C2×D4) = C20.23D4 | φ: C2×D4/C23 → C2 ⊆ Aut C10 | 80 | | C10.58(C2xD4) | 160,168 |
C10.59(C2×D4) = D4⋊D10 | φ: C2×D4/C23 → C2 ⊆ Aut C10 | 40 | 4+ | C10.59(C2xD4) | 160,170 |
C10.60(C2×D4) = D4.8D10 | φ: C2×D4/C23 → C2 ⊆ Aut C10 | 80 | 4 | C10.60(C2xD4) | 160,171 |
C10.61(C2×D4) = D4.9D10 | φ: C2×D4/C23 → C2 ⊆ Aut C10 | 80 | 4- | C10.61(C2xD4) | 160,172 |
C10.62(C2×D4) = C2×C23.D5 | φ: C2×D4/C23 → C2 ⊆ Aut C10 | 80 | | C10.62(C2xD4) | 160,173 |
C10.63(C2×D4) = C24⋊2D5 | φ: C2×D4/C23 → C2 ⊆ Aut C10 | 40 | | C10.63(C2xD4) | 160,174 |
C10.64(C2×D4) = C10×C22⋊C4 | central extension (φ=1) | 80 | | C10.64(C2xD4) | 160,176 |
C10.65(C2×D4) = C10×C4⋊C4 | central extension (φ=1) | 160 | | C10.65(C2xD4) | 160,177 |
C10.66(C2×D4) = D4×C20 | central extension (φ=1) | 80 | | C10.66(C2xD4) | 160,179 |
C10.67(C2×D4) = C5×C22≀C2 | central extension (φ=1) | 40 | | C10.67(C2xD4) | 160,181 |
C10.68(C2×D4) = C5×C4⋊D4 | central extension (φ=1) | 80 | | C10.68(C2xD4) | 160,182 |
C10.69(C2×D4) = C5×C22⋊Q8 | central extension (φ=1) | 80 | | C10.69(C2xD4) | 160,183 |
C10.70(C2×D4) = C5×C22.D4 | central extension (φ=1) | 80 | | C10.70(C2xD4) | 160,184 |
C10.71(C2×D4) = C5×C4.4D4 | central extension (φ=1) | 80 | | C10.71(C2xD4) | 160,185 |
C10.72(C2×D4) = C5×C4⋊1D4 | central extension (φ=1) | 80 | | C10.72(C2xD4) | 160,188 |
C10.73(C2×D4) = C5×C4⋊Q8 | central extension (φ=1) | 160 | | C10.73(C2xD4) | 160,189 |
C10.74(C2×D4) = C10×D8 | central extension (φ=1) | 80 | | C10.74(C2xD4) | 160,193 |
C10.75(C2×D4) = C10×SD16 | central extension (φ=1) | 80 | | C10.75(C2xD4) | 160,194 |
C10.76(C2×D4) = C10×Q16 | central extension (φ=1) | 160 | | C10.76(C2xD4) | 160,195 |
C10.77(C2×D4) = C5×C4○D8 | central extension (φ=1) | 80 | 2 | C10.77(C2xD4) | 160,196 |
C10.78(C2×D4) = C5×C8⋊C22 | central extension (φ=1) | 40 | 4 | C10.78(C2xD4) | 160,197 |
C10.79(C2×D4) = C5×C8.C22 | central extension (φ=1) | 80 | 4 | C10.79(C2xD4) | 160,198 |