Copied to
clipboard

## G = C24.6Dic3order 192 = 26·3

### 2nd non-split extension by C24 of Dic3 acting via Dic3/C6=C2

Series: Derived Chief Lower central Upper central

 Derived series C1 — C2×C6 — C24.6Dic3
 Chief series C1 — C3 — C6 — C12 — C2×C12 — C2×C3⋊C8 — C12.55D4 — C24.6Dic3
 Lower central C3 — C2×C6 — C24.6Dic3
 Upper central C1 — C2×C4 — C23×C4

Generators and relations for C24.6Dic3
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e6=d, f2=de3, ab=ba, faf-1=ac=ca, ad=da, ae=ea, bc=cb, fbf-1=bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e5 >

Subgroups: 344 in 190 conjugacy classes, 79 normal (21 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C6, C8, C2×C4, C2×C4, C2×C4, C23, C23, C23, C12, C12, C2×C6, C2×C6, C2×C6, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C24, C3⋊C8, C2×C12, C2×C12, C2×C12, C22×C6, C22×C6, C22×C6, C22⋊C8, C2×M4(2), C23×C4, C2×C3⋊C8, C4.Dic3, C22×C12, C22×C12, C22×C12, C23×C6, C24.4C4, C12.55D4, C2×C4.Dic3, C23×C12, C24.6Dic3
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, Dic3, D6, C22⋊C4, M4(2), C22×C4, C2×D4, C2×Dic3, C3⋊D4, C22×S3, C2×C22⋊C4, C2×M4(2), C4.Dic3, C6.D4, C22×Dic3, C2×C3⋊D4, C24.4C4, C2×C4.Dic3, C2×C6.D4, C24.6Dic3

Smallest permutation representation of C24.6Dic3
On 48 points
Generators in S48
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 34)(14 35)(15 36)(16 25)(17 26)(18 27)(19 28)(20 29)(21 30)(22 31)(23 32)(24 33)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 40)(2 41)(3 42)(4 43)(5 44)(6 45)(7 46)(8 47)(9 48)(10 37)(11 38)(12 39)(13 28)(14 29)(15 30)(16 31)(17 32)(18 33)(19 34)(20 35)(21 36)(22 25)(23 26)(24 27)
(1 46)(2 47)(3 48)(4 37)(5 38)(6 39)(7 40)(8 41)(9 42)(10 43)(11 44)(12 45)(13 28)(14 29)(15 30)(16 31)(17 32)(18 33)(19 34)(20 35)(21 36)(22 25)(23 26)(24 27)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 33 10 30 7 27 4 36)(2 26 11 35 8 32 5 29)(3 31 12 28 9 25 6 34)(13 42 22 39 19 48 16 45)(14 47 23 44 20 41 17 38)(15 40 24 37 21 46 18 43)

G:=sub<Sym(48)| (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,34)(14,35)(15,36)(16,25)(17,26)(18,27)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,37)(11,38)(12,39)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(19,34)(20,35)(21,36)(22,25)(23,26)(24,27), (1,46)(2,47)(3,48)(4,37)(5,38)(6,39)(7,40)(8,41)(9,42)(10,43)(11,44)(12,45)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(19,34)(20,35)(21,36)(22,25)(23,26)(24,27), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,33,10,30,7,27,4,36)(2,26,11,35,8,32,5,29)(3,31,12,28,9,25,6,34)(13,42,22,39,19,48,16,45)(14,47,23,44,20,41,17,38)(15,40,24,37,21,46,18,43)>;

G:=Group( (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,34)(14,35)(15,36)(16,25)(17,26)(18,27)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,37)(11,38)(12,39)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(19,34)(20,35)(21,36)(22,25)(23,26)(24,27), (1,46)(2,47)(3,48)(4,37)(5,38)(6,39)(7,40)(8,41)(9,42)(10,43)(11,44)(12,45)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(19,34)(20,35)(21,36)(22,25)(23,26)(24,27), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,33,10,30,7,27,4,36)(2,26,11,35,8,32,5,29)(3,31,12,28,9,25,6,34)(13,42,22,39,19,48,16,45)(14,47,23,44,20,41,17,38)(15,40,24,37,21,46,18,43) );

G=PermutationGroup([[(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,34),(14,35),(15,36),(16,25),(17,26),(18,27),(19,28),(20,29),(21,30),(22,31),(23,32),(24,33),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,40),(2,41),(3,42),(4,43),(5,44),(6,45),(7,46),(8,47),(9,48),(10,37),(11,38),(12,39),(13,28),(14,29),(15,30),(16,31),(17,32),(18,33),(19,34),(20,35),(21,36),(22,25),(23,26),(24,27)], [(1,46),(2,47),(3,48),(4,37),(5,38),(6,39),(7,40),(8,41),(9,42),(10,43),(11,44),(12,45),(13,28),(14,29),(15,30),(16,31),(17,32),(18,33),(19,34),(20,35),(21,36),(22,25),(23,26),(24,27)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,33,10,30,7,27,4,36),(2,26,11,35,8,32,5,29),(3,31,12,28,9,25,6,34),(13,42,22,39,19,48,16,45),(14,47,23,44,20,41,17,38),(15,40,24,37,21,46,18,43)]])

60 conjugacy classes

 class 1 2A 2B 2C 2D ··· 2I 3 4A 4B 4C 4D 4E ··· 4J 6A ··· 6O 8A ··· 8H 12A ··· 12P order 1 2 2 2 2 ··· 2 3 4 4 4 4 4 ··· 4 6 ··· 6 8 ··· 8 12 ··· 12 size 1 1 1 1 2 ··· 2 2 1 1 1 1 2 ··· 2 2 ··· 2 12 ··· 12 2 ··· 2

60 irreducible representations

 dim 1 1 1 1 1 1 2 2 2 2 2 2 2 2 type + + + + + + - + - image C1 C2 C2 C2 C4 C4 S3 D4 Dic3 D6 Dic3 M4(2) C3⋊D4 C4.Dic3 kernel C24.6Dic3 C12.55D4 C2×C4.Dic3 C23×C12 C22×C12 C23×C6 C23×C4 C2×C12 C22×C4 C22×C4 C24 C2×C6 C2×C4 C22 # reps 1 4 2 1 6 2 1 4 3 3 1 8 8 16

Matrix representation of C24.6Dic3 in GL4(𝔽73) generated by

 72 0 0 0 0 1 0 0 0 0 1 0 0 0 0 72
,
 1 0 0 0 0 72 0 0 0 0 72 0 0 0 0 72
,
 72 0 0 0 0 72 0 0 0 0 72 0 0 0 0 72
,
 72 0 0 0 0 72 0 0 0 0 1 0 0 0 0 1
,
 3 0 0 0 0 24 0 0 0 0 64 0 0 0 0 8
,
 0 1 0 0 46 0 0 0 0 0 0 1 0 0 1 0
G:=sub<GL(4,GF(73))| [72,0,0,0,0,1,0,0,0,0,1,0,0,0,0,72],[1,0,0,0,0,72,0,0,0,0,72,0,0,0,0,72],[72,0,0,0,0,72,0,0,0,0,72,0,0,0,0,72],[72,0,0,0,0,72,0,0,0,0,1,0,0,0,0,1],[3,0,0,0,0,24,0,0,0,0,64,0,0,0,0,8],[0,46,0,0,1,0,0,0,0,0,0,1,0,0,1,0] >;

C24.6Dic3 in GAP, Magma, Sage, TeX

C_2^4._6{\rm Dic}_3
% in TeX

G:=Group("C2^4.6Dic3");
// GroupNames label

G:=SmallGroup(192,766);
// by ID

G=gap.SmallGroup(192,766);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,56,253,758,136,6278]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^6=d,f^2=d*e^3,a*b=b*a,f*a*f^-1=a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^5>;
// generators/relations

׿
×
𝔽