extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C4).1(C3⋊D4) = C23.3D12 | φ: C3⋊D4/C3 → D4 ⊆ Aut C2×C4 | 24 | 8+ | (C2xC4).1(C3:D4) | 192,34 |
(C2×C4).2(C3⋊D4) = C23.4D12 | φ: C3⋊D4/C3 → D4 ⊆ Aut C2×C4 | 48 | 8- | (C2xC4).2(C3:D4) | 192,35 |
(C2×C4).3(C3⋊D4) = (C2×C4).D12 | φ: C3⋊D4/C3 → D4 ⊆ Aut C2×C4 | 48 | 8+ | (C2xC4).3(C3:D4) | 192,36 |
(C2×C4).4(C3⋊D4) = (C2×C12).D4 | φ: C3⋊D4/C3 → D4 ⊆ Aut C2×C4 | 48 | 8- | (C2xC4).4(C3:D4) | 192,37 |
(C2×C4).5(C3⋊D4) = C24⋊5Dic3 | φ: C3⋊D4/C3 → D4 ⊆ Aut C2×C4 | 24 | 4 | (C2xC4).5(C3:D4) | 192,95 |
(C2×C4).6(C3⋊D4) = (C22×C12)⋊C4 | φ: C3⋊D4/C3 → D4 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).6(C3:D4) | 192,98 |
(C2×C4).7(C3⋊D4) = C42.Dic3 | φ: C3⋊D4/C3 → D4 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).7(C3:D4) | 192,101 |
(C2×C4).8(C3⋊D4) = C42.3Dic3 | φ: C3⋊D4/C3 → D4 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).8(C3:D4) | 192,107 |
(C2×C4).9(C3⋊D4) = C22⋊C4⋊D6 | φ: C3⋊D4/C3 → D4 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).9(C3:D4) | 192,612 |
(C2×C4).10(C3⋊D4) = D12.14D4 | φ: C3⋊D4/C3 → D4 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).10(C3:D4) | 192,621 |
(C2×C4).11(C3⋊D4) = D12.15D4 | φ: C3⋊D4/C3 → D4 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).11(C3:D4) | 192,654 |
(C2×C4).12(C3⋊D4) = 2+ 1+4.5S3 | φ: C3⋊D4/C3 → D4 ⊆ Aut C2×C4 | 48 | 8- | (C2xC4).12(C3:D4) | 192,802 |
(C2×C4).13(C3⋊D4) = 2- 1+4⋊4S3 | φ: C3⋊D4/C3 → D4 ⊆ Aut C2×C4 | 48 | 8+ | (C2xC4).13(C3:D4) | 192,804 |
(C2×C4).14(C3⋊D4) = 2- 1+4.2S3 | φ: C3⋊D4/C3 → D4 ⊆ Aut C2×C4 | 48 | 8- | (C2xC4).14(C3:D4) | 192,805 |
(C2×C4).15(C3⋊D4) = C8.Dic6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).15(C3:D4) | 192,46 |
(C2×C4).16(C3⋊D4) = D24⋊8C4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).16(C3:D4) | 192,47 |
(C2×C4).17(C3⋊D4) = C24.6Q8 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).17(C3:D4) | 192,53 |
(C2×C4).18(C3⋊D4) = D24.C4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 48 | 4+ | (C2xC4).18(C3:D4) | 192,54 |
(C2×C4).19(C3⋊D4) = C24.8D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | 4- | (C2xC4).19(C3:D4) | 192,55 |
(C2×C4).20(C3⋊D4) = C42⋊3Dic3 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).20(C3:D4) | 192,90 |
(C2×C4).21(C3⋊D4) = M4(2)⋊Dic3 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).21(C3:D4) | 192,113 |
(C2×C4).22(C3⋊D4) = C12.20C42 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).22(C3:D4) | 192,116 |
(C2×C4).23(C3⋊D4) = C12.21C42 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).23(C3:D4) | 192,119 |
(C2×C4).24(C3⋊D4) = D8.Dic3 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).24(C3:D4) | 192,122 |
(C2×C4).25(C3⋊D4) = Q16.Dic3 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | 4 | (C2xC4).25(C3:D4) | 192,124 |
(C2×C4).26(C3⋊D4) = D8⋊2Dic3 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).26(C3:D4) | 192,125 |
(C2×C4).27(C3⋊D4) = C23⋊2Dic6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).27(C3:D4) | 192,506 |
(C2×C4).28(C3⋊D4) = C24.17D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).28(C3:D4) | 192,507 |
(C2×C4).29(C3⋊D4) = C24.18D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).29(C3:D4) | 192,508 |
(C2×C4).30(C3⋊D4) = C24.21D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).30(C3:D4) | 192,512 |
(C2×C4).31(C3⋊D4) = (C2×C6).40D8 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).31(C3:D4) | 192,526 |
(C2×C4).32(C3⋊D4) = C4⋊C4.228D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).32(C3:D4) | 192,527 |
(C2×C4).33(C3⋊D4) = C4⋊C4.230D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).33(C3:D4) | 192,529 |
(C2×C4).34(C3⋊D4) = C4⋊C4.231D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).34(C3:D4) | 192,530 |
(C2×C4).35(C3⋊D4) = (C2×Dic3)⋊Q8 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).35(C3:D4) | 192,538 |
(C2×C4).36(C3⋊D4) = (C2×C4).44D12 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).36(C3:D4) | 192,540 |
(C2×C4).37(C3⋊D4) = (C2×C12).54D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).37(C3:D4) | 192,541 |
(C2×C4).38(C3⋊D4) = (C2×Dic3).Q8 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).38(C3:D4) | 192,542 |
(C2×C4).39(C3⋊D4) = (C2×C12).288D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).39(C3:D4) | 192,544 |
(C2×C4).40(C3⋊D4) = (C2×C12).55D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).40(C3:D4) | 192,545 |
(C2×C4).41(C3⋊D4) = (C2×C4)⋊3D12 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).41(C3:D4) | 192,550 |
(C2×C4).42(C3⋊D4) = (C2×C12).289D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).42(C3:D4) | 192,551 |
(C2×C4).43(C3⋊D4) = (C2×C12).290D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).43(C3:D4) | 192,552 |
(C2×C4).44(C3⋊D4) = (C2×C12).56D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).44(C3:D4) | 192,553 |
(C2×C4).45(C3⋊D4) = C42⋊6D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).45(C3:D4) | 192,564 |
(C2×C4).46(C3⋊D4) = (C2×D12)⋊13C4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).46(C3:D4) | 192,565 |
(C2×C4).47(C3⋊D4) = (C2×C6).D8 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).47(C3:D4) | 192,592 |
(C2×C4).48(C3⋊D4) = C4⋊D4.S3 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).48(C3:D4) | 192,593 |
(C2×C4).49(C3⋊D4) = D12⋊16D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).49(C3:D4) | 192,595 |
(C2×C4).50(C3⋊D4) = C4⋊D4⋊S3 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).50(C3:D4) | 192,598 |
(C2×C4).51(C3⋊D4) = Dic6⋊17D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).51(C3:D4) | 192,599 |
(C2×C4).52(C3⋊D4) = C3⋊C8⋊5D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).52(C3:D4) | 192,601 |
(C2×C4).53(C3⋊D4) = (C2×Q8).49D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).53(C3:D4) | 192,602 |
(C2×C4).54(C3⋊D4) = (C2×C6).Q16 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).54(C3:D4) | 192,603 |
(C2×C4).55(C3⋊D4) = D12.36D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).55(C3:D4) | 192,605 |
(C2×C4).56(C3⋊D4) = C3⋊C8⋊6D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).56(C3:D4) | 192,608 |
(C2×C4).57(C3⋊D4) = Dic6.37D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).57(C3:D4) | 192,609 |
(C2×C4).58(C3⋊D4) = C3⋊C8.6D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).58(C3:D4) | 192,611 |
(C2×C4).59(C3⋊D4) = C42.61D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).59(C3:D4) | 192,613 |
(C2×C4).60(C3⋊D4) = C42.62D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).60(C3:D4) | 192,614 |
(C2×C4).61(C3⋊D4) = D12.23D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).61(C3:D4) | 192,616 |
(C2×C4).62(C3⋊D4) = C42.64D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).62(C3:D4) | 192,617 |
(C2×C4).63(C3⋊D4) = C42.65D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).63(C3:D4) | 192,619 |
(C2×C4).64(C3⋊D4) = Dic6.4Q8 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).64(C3:D4) | 192,622 |
(C2×C4).65(C3⋊D4) = C42.68D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).65(C3:D4) | 192,623 |
(C2×C4).66(C3⋊D4) = D12.4Q8 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).66(C3:D4) | 192,625 |
(C2×C4).67(C3⋊D4) = C42.70D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).67(C3:D4) | 192,626 |
(C2×C4).68(C3⋊D4) = C42.71D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).68(C3:D4) | 192,628 |
(C2×C4).69(C3⋊D4) = C42.72D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).69(C3:D4) | 192,630 |
(C2×C4).70(C3⋊D4) = C42.74D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).70(C3:D4) | 192,633 |
(C2×C4).71(C3⋊D4) = C42.76D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).71(C3:D4) | 192,640 |
(C2×C4).72(C3⋊D4) = C42.77D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).72(C3:D4) | 192,641 |
(C2×C4).73(C3⋊D4) = C42.80D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).73(C3:D4) | 192,645 |
(C2×C4).74(C3⋊D4) = C42.82D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).74(C3:D4) | 192,648 |
(C2×C4).75(C3⋊D4) = C23.51D12 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).75(C3:D4) | 192,679 |
(C2×C4).76(C3⋊D4) = C23.53D12 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).76(C3:D4) | 192,690 |
(C2×C4).77(C3⋊D4) = M4(2).31D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).77(C3:D4) | 192,691 |
(C2×C4).78(C3⋊D4) = C23.54D12 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).78(C3:D4) | 192,692 |
(C2×C4).79(C3⋊D4) = D8.D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).79(C3:D4) | 192,706 |
(C2×C4).80(C3⋊D4) = C24.27C23 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | 4 | (C2xC4).80(C3:D4) | 192,738 |
(C2×C4).81(C3⋊D4) = Q16⋊D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 48 | 4+ | (C2xC4).81(C3:D4) | 192,752 |
(C2×C4).82(C3⋊D4) = D8.9D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | 4- | (C2xC4).82(C3:D4) | 192,754 |
(C2×C4).83(C3⋊D4) = (C2×C6)⋊8D8 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).83(C3:D4) | 192,776 |
(C2×C4).84(C3⋊D4) = (C3×D4).31D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).84(C3:D4) | 192,777 |
(C2×C4).85(C3⋊D4) = C24.31D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).85(C3:D4) | 192,781 |
(C2×C4).86(C3⋊D4) = (C3×Q8)⋊13D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).86(C3:D4) | 192,786 |
(C2×C4).87(C3⋊D4) = (C2×C6)⋊8Q16 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).87(C3:D4) | 192,787 |
(C2×C4).88(C3⋊D4) = C22.52(S3×Q8) | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).88(C3:D4) | 192,789 |
(C2×C4).89(C3⋊D4) = (C22×Q8)⋊9S3 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).89(C3:D4) | 192,790 |
(C2×C4).90(C3⋊D4) = (C6×D4)⋊9C4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).90(C3:D4) | 192,795 |
(C2×C4).91(C3⋊D4) = (C6×D4).16C4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).91(C3:D4) | 192,796 |
(C2×C4).92(C3⋊D4) = C2×D12⋊6C22 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).92(C3:D4) | 192,1352 |
(C2×C4).93(C3⋊D4) = C2×Q8.11D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).93(C3:D4) | 192,1367 |
(C2×C4).94(C3⋊D4) = C6.442- 1+4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).94(C3:D4) | 192,1375 |
(C2×C4).95(C3⋊D4) = C2×D4⋊D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).95(C3:D4) | 192,1379 |
(C2×C4).96(C3⋊D4) = C2×Q8.14D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).96(C3:D4) | 192,1382 |
(C2×C4).97(C3⋊D4) = C6.1052- 1+4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).97(C3:D4) | 192,1384 |
(C2×C4).98(C3⋊D4) = C24.15D6 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).98(C3:D4) | 192,504 |
(C2×C4).99(C3⋊D4) = Dic3⋊(C4⋊C4) | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).99(C3:D4) | 192,535 |
(C2×C4).100(C3⋊D4) = D6⋊C4⋊7C4 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).100(C3:D4) | 192,549 |
(C2×C4).101(C3⋊D4) = C4×D4⋊S3 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).101(C3:D4) | 192,572 |
(C2×C4).102(C3⋊D4) = C4×D4.S3 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).102(C3:D4) | 192,576 |
(C2×C4).103(C3⋊D4) = C4×Q8⋊2S3 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).103(C3:D4) | 192,584 |
(C2×C4).104(C3⋊D4) = C4×C3⋊Q16 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).104(C3:D4) | 192,588 |
(C2×C4).105(C3⋊D4) = C3⋊C8⋊22D4 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).105(C3:D4) | 192,597 |
(C2×C4).106(C3⋊D4) = C3⋊C8⋊23D4 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).106(C3:D4) | 192,600 |
(C2×C4).107(C3⋊D4) = C3⋊C8⋊24D4 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).107(C3:D4) | 192,607 |
(C2×C4).108(C3⋊D4) = C3⋊C8.29D4 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).108(C3:D4) | 192,610 |
(C2×C4).109(C3⋊D4) = C42.213D6 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).109(C3:D4) | 192,615 |
(C2×C4).110(C3⋊D4) = C42.214D6 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).110(C3:D4) | 192,618 |
(C2×C4).111(C3⋊D4) = C42.215D6 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).111(C3:D4) | 192,624 |
(C2×C4).112(C3⋊D4) = C42.216D6 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).112(C3:D4) | 192,627 |
(C2×C4).113(C3⋊D4) = C6.6D16 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).113(C3:D4) | 192,48 |
(C2×C4).114(C3⋊D4) = C6.SD32 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).114(C3:D4) | 192,49 |
(C2×C4).115(C3⋊D4) = C6.D16 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).115(C3:D4) | 192,50 |
(C2×C4).116(C3⋊D4) = C6.Q32 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).116(C3:D4) | 192,51 |
(C2×C4).117(C3⋊D4) = C24.7Q8 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | 4 | (C2xC4).117(C3:D4) | 192,52 |
(C2×C4).118(C3⋊D4) = Dic12.C4 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | 4 | (C2xC4).118(C3:D4) | 192,56 |
(C2×C4).119(C3⋊D4) = D8⋊1Dic3 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).119(C3:D4) | 192,121 |
(C2×C4).120(C3⋊D4) = C6.5Q32 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).120(C3:D4) | 192,123 |
(C2×C4).121(C3⋊D4) = C24.41D4 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | 4 | (C2xC4).121(C3:D4) | 192,126 |
(C2×C4).122(C3⋊D4) = C2×C6.Q16 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).122(C3:D4) | 192,521 |
(C2×C4).123(C3⋊D4) = C2×C12.Q8 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).123(C3:D4) | 192,522 |
(C2×C4).124(C3⋊D4) = C2×C6.D8 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).124(C3:D4) | 192,524 |
(C2×C4).125(C3⋊D4) = C2×C6.SD16 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).125(C3:D4) | 192,528 |
(C2×C4).126(C3⋊D4) = C4.(D6⋊C4) | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).126(C3:D4) | 192,532 |
(C2×C4).127(C3⋊D4) = (C4×Dic3)⋊8C4 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).127(C3:D4) | 192,534 |
(C2×C4).128(C3⋊D4) = (C4×Dic3)⋊9C4 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).128(C3:D4) | 192,536 |
(C2×C4).129(C3⋊D4) = (C2×D12)⋊10C4 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).129(C3:D4) | 192,547 |
(C2×C4).130(C3⋊D4) = C12.16D8 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).130(C3:D4) | 192,629 |
(C2×C4).131(C3⋊D4) = C12⋊D8 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).131(C3:D4) | 192,632 |
(C2×C4).132(C3⋊D4) = C12⋊4SD16 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).132(C3:D4) | 192,635 |
(C2×C4).133(C3⋊D4) = C12.17D8 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).133(C3:D4) | 192,637 |
(C2×C4).134(C3⋊D4) = C12.9Q16 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).134(C3:D4) | 192,638 |
(C2×C4).135(C3⋊D4) = C12.SD16 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).135(C3:D4) | 192,639 |
(C2×C4).136(C3⋊D4) = C12⋊6SD16 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).136(C3:D4) | 192,644 |
(C2×C4).137(C3⋊D4) = C12.D8 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).137(C3:D4) | 192,647 |
(C2×C4).138(C3⋊D4) = C12⋊3Q16 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).138(C3:D4) | 192,651 |
(C2×C4).139(C3⋊D4) = C12.Q16 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).139(C3:D4) | 192,652 |
(C2×C4).140(C3⋊D4) = Dic3⋊4M4(2) | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).140(C3:D4) | 192,677 |
(C2×C4).141(C3⋊D4) = D6⋊C8⋊40C2 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).141(C3:D4) | 192,688 |
(C2×C4).142(C3⋊D4) = C2×C3⋊D16 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).142(C3:D4) | 192,705 |
(C2×C4).143(C3⋊D4) = C2×D8.S3 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).143(C3:D4) | 192,707 |
(C2×C4).144(C3⋊D4) = C2×C8.6D6 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).144(C3:D4) | 192,737 |
(C2×C4).145(C3⋊D4) = C2×C3⋊Q32 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).145(C3:D4) | 192,739 |
(C2×C4).146(C3⋊D4) = Q16.D6 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | 4 | (C2xC4).146(C3:D4) | 192,753 |
(C2×C4).147(C3⋊D4) = C2×D4⋊Dic3 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).147(C3:D4) | 192,773 |
(C2×C4).148(C3⋊D4) = C24.30D6 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).148(C3:D4) | 192,780 |
(C2×C4).149(C3⋊D4) = C2×Q8⋊2Dic3 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).149(C3:D4) | 192,783 |
(C2×C4).150(C3⋊D4) = (C6×Q8)⋊7C4 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).150(C3:D4) | 192,788 |
(C2×C4).151(C3⋊D4) = C22×D4⋊S3 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).151(C3:D4) | 192,1351 |
(C2×C4).152(C3⋊D4) = C22×D4.S3 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).152(C3:D4) | 192,1353 |
(C2×C4).153(C3⋊D4) = C2×C23.12D6 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).153(C3:D4) | 192,1356 |
(C2×C4).154(C3⋊D4) = C22×Q8⋊2S3 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).154(C3:D4) | 192,1366 |
(C2×C4).155(C3⋊D4) = C22×C3⋊Q16 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).155(C3:D4) | 192,1368 |
(C2×C4).156(C3⋊D4) = C2×Dic3⋊Q8 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).156(C3:D4) | 192,1369 |
(C2×C4).157(C3⋊D4) = C2×C12.23D4 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).157(C3:D4) | 192,1373 |
(C2×C4).158(C3⋊D4) = C2×Q8.13D6 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).158(C3:D4) | 192,1380 |
(C2×C4).159(C3⋊D4) = C24.3Dic3 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).159(C3:D4) | 192,84 |
(C2×C4).160(C3⋊D4) = (C2×C12)⋊C8 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).160(C3:D4) | 192,87 |
(C2×C4).161(C3⋊D4) = C12.57D8 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).161(C3:D4) | 192,93 |
(C2×C4).162(C3⋊D4) = C12.26Q16 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).162(C3:D4) | 192,94 |
(C2×C4).163(C3⋊D4) = (C6×D4)⋊C4 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).163(C3:D4) | 192,96 |
(C2×C4).164(C3⋊D4) = (C6×Q8)⋊C4 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).164(C3:D4) | 192,97 |
(C2×C4).165(C3⋊D4) = C42.7D6 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).165(C3:D4) | 192,99 |
(C2×C4).166(C3⋊D4) = C42.8D6 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).166(C3:D4) | 192,102 |
(C2×C4).167(C3⋊D4) = C24.14D6 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).167(C3:D4) | 192,503 |
(C2×C4).168(C3⋊D4) = C6.67(C4×D4) | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).168(C3:D4) | 192,537 |
(C2×C4).169(C3⋊D4) = D6⋊C4⋊6C4 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).169(C3:D4) | 192,548 |
(C2×C4).170(C3⋊D4) = C6.Q16⋊C2 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).170(C3:D4) | 192,594 |
(C2×C4).171(C3⋊D4) = D12⋊17D4 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).171(C3:D4) | 192,596 |
(C2×C4).172(C3⋊D4) = (C2×Q8).51D6 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).172(C3:D4) | 192,604 |
(C2×C4).173(C3⋊D4) = D12.37D4 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).173(C3:D4) | 192,606 |
(C2×C4).174(C3⋊D4) = C12.C42 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).174(C3:D4) | 192,88 |
(C2×C4).175(C3⋊D4) = C12.(C4⋊C4) | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).175(C3:D4) | 192,89 |
(C2×C4).176(C3⋊D4) = C12.9D8 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).176(C3:D4) | 192,103 |
(C2×C4).177(C3⋊D4) = C12.5Q16 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).177(C3:D4) | 192,105 |
(C2×C4).178(C3⋊D4) = C12.10D8 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).178(C3:D4) | 192,106 |
(C2×C4).179(C3⋊D4) = C12.3C42 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).179(C3:D4) | 192,114 |
(C2×C4).180(C3⋊D4) = (C2×C24)⋊C4 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).180(C3:D4) | 192,115 |
(C2×C4).181(C3⋊D4) = C4⋊C4.225D6 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).181(C3:D4) | 192,523 |
(C2×C4).182(C3⋊D4) = C4○D12⋊C4 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).182(C3:D4) | 192,525 |
(C2×C4).183(C3⋊D4) = C12⋊(C4⋊C4) | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).183(C3:D4) | 192,531 |
(C2×C4).184(C3⋊D4) = C4⋊(D6⋊C4) | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).184(C3:D4) | 192,546 |
(C2×C4).185(C3⋊D4) = C12⋊2D8 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).185(C3:D4) | 192,631 |
(C2×C4).186(C3⋊D4) = Dic6⋊9D4 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).186(C3:D4) | 192,634 |
(C2×C4).187(C3⋊D4) = C12⋊5SD16 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).187(C3:D4) | 192,642 |
(C2×C4).188(C3⋊D4) = D12⋊5Q8 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).188(C3:D4) | 192,643 |
(C2×C4).189(C3⋊D4) = D12⋊6Q8 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).189(C3:D4) | 192,646 |
(C2×C4).190(C3⋊D4) = C12⋊Q16 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).190(C3:D4) | 192,649 |
(C2×C4).191(C3⋊D4) = Dic6⋊5Q8 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).191(C3:D4) | 192,650 |
(C2×C4).192(C3⋊D4) = Dic6⋊6Q8 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).192(C3:D4) | 192,653 |
(C2×C4).193(C3⋊D4) = C12.88(C2×Q8) | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).193(C3:D4) | 192,678 |
(C2×C4).194(C3⋊D4) = C23.8Dic6 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).194(C3:D4) | 192,683 |
(C2×C4).195(C3⋊D4) = D6⋊6M4(2) | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).195(C3:D4) | 192,685 |
(C2×C4).196(C3⋊D4) = (C6×D4)⋊6C4 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).196(C3:D4) | 192,774 |
(C2×C4).197(C3⋊D4) = C2×C12.D4 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).197(C3:D4) | 192,775 |
(C2×C4).198(C3⋊D4) = (C6×Q8)⋊6C4 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).198(C3:D4) | 192,784 |
(C2×C4).199(C3⋊D4) = C2×C12.10D4 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).199(C3:D4) | 192,785 |
(C2×C4).200(C3⋊D4) = (C6×D4).11C4 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).200(C3:D4) | 192,793 |
(C2×C4).201(C3⋊D4) = (C6×D4)⋊10C4 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).201(C3:D4) | 192,799 |
(C2×C4).202(C3⋊D4) = C2×D6⋊3Q8 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).202(C3:D4) | 192,1372 |
(C2×C4).203(C3⋊D4) = C12.C24 | φ: C3⋊D4/D6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).203(C3:D4) | 192,1381 |
(C2×C4).204(C3⋊D4) = C4.8Dic12 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).204(C3:D4) | 192,15 |
(C2×C4).205(C3⋊D4) = C4.17D24 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).205(C3:D4) | 192,18 |
(C2×C4).206(C3⋊D4) = C42.D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).206(C3:D4) | 192,23 |
(C2×C4).207(C3⋊D4) = C42.2D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).207(C3:D4) | 192,24 |
(C2×C4).208(C3⋊D4) = C23.35D12 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).208(C3:D4) | 192,26 |
(C2×C4).209(C3⋊D4) = (C22×S3)⋊C8 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).209(C3:D4) | 192,27 |
(C2×C4).210(C3⋊D4) = (C2×Dic3)⋊C8 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).210(C3:D4) | 192,28 |
(C2×C4).211(C3⋊D4) = C22.2D24 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).211(C3:D4) | 192,29 |
(C2×C4).212(C3⋊D4) = (C2×C42).6S3 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).212(C3:D4) | 192,492 |
(C2×C4).213(C3⋊D4) = (C2×C42)⋊3S3 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).213(C3:D4) | 192,499 |
(C2×C4).214(C3⋊D4) = C4⋊C4.233D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).214(C3:D4) | 192,555 |
(C2×C4).215(C3⋊D4) = C4⋊C4.236D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).215(C3:D4) | 192,562 |
(C2×C4).216(C3⋊D4) = D4.3Dic6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).216(C3:D4) | 192,568 |
(C2×C4).217(C3⋊D4) = C42.48D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).217(C3:D4) | 192,573 |
(C2×C4).218(C3⋊D4) = D4.1D12 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).218(C3:D4) | 192,575 |
(C2×C4).219(C3⋊D4) = C42.51D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).219(C3:D4) | 192,577 |
(C2×C4).220(C3⋊D4) = Q8.5Dic6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).220(C3:D4) | 192,581 |
(C2×C4).221(C3⋊D4) = C42.56D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).221(C3:D4) | 192,585 |
(C2×C4).222(C3⋊D4) = Q8.6D12 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).222(C3:D4) | 192,587 |
(C2×C4).223(C3⋊D4) = C42.59D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).223(C3:D4) | 192,589 |
(C2×C4).224(C3⋊D4) = C24.73D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).224(C3:D4) | 192,769 |
(C2×C4).225(C3⋊D4) = (C3×D4)⋊14D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).225(C3:D4) | 192,797 |
(C2×C4).226(C3⋊D4) = (C3×D4).32D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).226(C3:D4) | 192,798 |
(C2×C4).227(C3⋊D4) = C4.Dic12 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).227(C3:D4) | 192,40 |
(C2×C4).228(C3⋊D4) = C12.47D8 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).228(C3:D4) | 192,41 |
(C2×C4).229(C3⋊D4) = C4.D24 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).229(C3:D4) | 192,44 |
(C2×C4).230(C3⋊D4) = C12.2D8 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).230(C3:D4) | 192,45 |
(C2×C4).231(C3⋊D4) = C12.8C42 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).231(C3:D4) | 192,82 |
(C2×C4).232(C3⋊D4) = (C2×C12).Q8 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).232(C3:D4) | 192,92 |
(C2×C4).233(C3⋊D4) = C12.9C42 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).233(C3:D4) | 192,110 |
(C2×C4).234(C3⋊D4) = C12.10C42 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).234(C3:D4) | 192,111 |
(C2×C4).235(C3⋊D4) = M4(2)⋊4Dic3 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).235(C3:D4) | 192,118 |
(C2×C4).236(C3⋊D4) = C2×C42⋊4S3 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).236(C3:D4) | 192,486 |
(C2×C4).237(C3⋊D4) = C12⋊4(C4⋊C4) | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).237(C3:D4) | 192,487 |
(C2×C4).238(C3⋊D4) = (C2×Dic6)⋊7C4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).238(C3:D4) | 192,488 |
(C2×C4).239(C3⋊D4) = (C2×C4)⋊6D12 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).239(C3:D4) | 192,498 |
(C2×C4).240(C3⋊D4) = C4⋊C4.232D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).240(C3:D4) | 192,554 |
(C2×C4).241(C3⋊D4) = C4⋊C4⋊36D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).241(C3:D4) | 192,560 |
(C2×C4).242(C3⋊D4) = C4⋊C4.237D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).242(C3:D4) | 192,563 |
(C2×C4).243(C3⋊D4) = C12.50D8 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).243(C3:D4) | 192,566 |
(C2×C4).244(C3⋊D4) = C12.38SD16 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).244(C3:D4) | 192,567 |
(C2×C4).245(C3⋊D4) = C12⋊7D8 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).245(C3:D4) | 192,574 |
(C2×C4).246(C3⋊D4) = D4.2D12 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).246(C3:D4) | 192,578 |
(C2×C4).247(C3⋊D4) = Q8⋊4Dic6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).247(C3:D4) | 192,579 |
(C2×C4).248(C3⋊D4) = Q8⋊5Dic6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).248(C3:D4) | 192,580 |
(C2×C4).249(C3⋊D4) = Q8⋊2D12 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).249(C3:D4) | 192,586 |
(C2×C4).250(C3⋊D4) = C12⋊7Q16 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).250(C3:D4) | 192,590 |
(C2×C4).251(C3⋊D4) = Dic3⋊C8⋊C2 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).251(C3:D4) | 192,661 |
(C2×C4).252(C3⋊D4) = C2×C2.Dic12 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).252(C3:D4) | 192,662 |
(C2×C4).253(C3⋊D4) = (C22×C8)⋊7S3 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).253(C3:D4) | 192,669 |
(C2×C4).254(C3⋊D4) = C2×C2.D24 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).254(C3:D4) | 192,671 |
(C2×C4).255(C3⋊D4) = C23.28D12 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).255(C3:D4) | 192,672 |
(C2×C4).256(C3⋊D4) = C2×C12.46D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).256(C3:D4) | 192,689 |
(C2×C4).257(C3⋊D4) = C2×C12.47D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).257(C3:D4) | 192,695 |
(C2×C4).258(C3⋊D4) = M4(2)⋊24D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).258(C3:D4) | 192,698 |
(C2×C4).259(C3⋊D4) = C24.6Dic3 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).259(C3:D4) | 192,766 |
(C2×C4).260(C3⋊D4) = C24.75D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).260(C3:D4) | 192,771 |
(C2×C4).261(C3⋊D4) = C4○D4⋊3Dic3 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).261(C3:D4) | 192,791 |
(C2×C4).262(C3⋊D4) = C2×C12.48D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).262(C3:D4) | 192,1343 |
(C2×C4).263(C3⋊D4) = C12.53D8 | central extension (φ=1) | 192 | | (C2xC4).263(C3:D4) | 192,38 |
(C2×C4).264(C3⋊D4) = C12.39SD16 | central extension (φ=1) | 192 | | (C2xC4).264(C3:D4) | 192,39 |
(C2×C4).265(C3⋊D4) = D12⋊2C8 | central extension (φ=1) | 96 | | (C2xC4).265(C3:D4) | 192,42 |
(C2×C4).266(C3⋊D4) = Dic6⋊2C8 | central extension (φ=1) | 192 | | (C2xC4).266(C3:D4) | 192,43 |
(C2×C4).267(C3⋊D4) = (C2×C12)⋊3C8 | central extension (φ=1) | 192 | | (C2xC4).267(C3:D4) | 192,83 |
(C2×C4).268(C3⋊D4) = C12.2C42 | central extension (φ=1) | 48 | | (C2xC4).268(C3:D4) | 192,91 |
(C2×C4).269(C3⋊D4) = (C2×C24)⋊5C4 | central extension (φ=1) | 192 | | (C2xC4).269(C3:D4) | 192,109 |
(C2×C4).270(C3⋊D4) = C12.4C42 | central extension (φ=1) | 96 | | (C2xC4).270(C3:D4) | 192,117 |
(C2×C4).271(C3⋊D4) = C4×Dic3⋊C4 | central extension (φ=1) | 192 | | (C2xC4).271(C3:D4) | 192,490 |
(C2×C4).272(C3⋊D4) = C4×D6⋊C4 | central extension (φ=1) | 96 | | (C2xC4).272(C3:D4) | 192,497 |
(C2×C4).273(C3⋊D4) = C4⋊C4.234D6 | central extension (φ=1) | 96 | | (C2xC4).273(C3:D4) | 192,557 |
(C2×C4).274(C3⋊D4) = C4.(C2×D12) | central extension (φ=1) | 96 | | (C2xC4).274(C3:D4) | 192,561 |
(C2×C4).275(C3⋊D4) = C2×Dic3⋊C8 | central extension (φ=1) | 192 | | (C2xC4).275(C3:D4) | 192,658 |
(C2×C4).276(C3⋊D4) = C2×D6⋊C8 | central extension (φ=1) | 96 | | (C2xC4).276(C3:D4) | 192,667 |
(C2×C4).277(C3⋊D4) = C2×C12.53D4 | central extension (φ=1) | 96 | | (C2xC4).277(C3:D4) | 192,682 |
(C2×C4).278(C3⋊D4) = C2×D12⋊C4 | central extension (φ=1) | 48 | | (C2xC4).278(C3:D4) | 192,697 |
(C2×C4).279(C3⋊D4) = C2×C12.55D4 | central extension (φ=1) | 96 | | (C2xC4).279(C3:D4) | 192,765 |
(C2×C4).280(C3⋊D4) = C4×C6.D4 | central extension (φ=1) | 96 | | (C2xC4).280(C3:D4) | 192,768 |
(C2×C4).281(C3⋊D4) = C4○D4⋊4Dic3 | central extension (φ=1) | 96 | | (C2xC4).281(C3:D4) | 192,792 |
(C2×C4).282(C3⋊D4) = C2×Q8⋊3Dic3 | central extension (φ=1) | 48 | | (C2xC4).282(C3:D4) | 192,794 |