extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(C2×C3⋊D4) = C2×C3⋊D16 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.1(C2xC3:D4) | 192,705 |
C4.2(C2×C3⋊D4) = D8.D6 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 48 | 4 | C4.2(C2xC3:D4) | 192,706 |
C4.3(C2×C3⋊D4) = C2×D8.S3 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.3(C2xC3:D4) | 192,707 |
C4.4(C2×C3⋊D4) = C24⋊5D4 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.4(C2xC3:D4) | 192,710 |
C4.5(C2×C3⋊D4) = C24⋊11D4 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.5(C2xC3:D4) | 192,713 |
C4.6(C2×C3⋊D4) = C24.22D4 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.6(C2xC3:D4) | 192,714 |
C4.7(C2×C3⋊D4) = C24.31D4 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.7(C2xC3:D4) | 192,726 |
C4.8(C2×C3⋊D4) = C24.43D4 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.8(C2xC3:D4) | 192,727 |
C4.9(C2×C3⋊D4) = C24⋊15D4 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.9(C2xC3:D4) | 192,734 |
C4.10(C2×C3⋊D4) = C24⋊9D4 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.10(C2xC3:D4) | 192,735 |
C4.11(C2×C3⋊D4) = C2×C8.6D6 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.11(C2xC3:D4) | 192,737 |
C4.12(C2×C3⋊D4) = C24.27C23 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | 4 | C4.12(C2xC3:D4) | 192,738 |
C4.13(C2×C3⋊D4) = C2×C3⋊Q32 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 192 | | C4.13(C2xC3:D4) | 192,739 |
C4.14(C2×C3⋊D4) = C24.26D4 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 192 | | C4.14(C2xC3:D4) | 192,742 |
C4.15(C2×C3⋊D4) = C24.37D4 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.15(C2xC3:D4) | 192,749 |
C4.16(C2×C3⋊D4) = C24.28D4 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.16(C2xC3:D4) | 192,750 |
C4.17(C2×C3⋊D4) = Q16⋊D6 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 48 | 4+ | C4.17(C2xC3:D4) | 192,752 |
C4.18(C2×C3⋊D4) = Q16.D6 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | 4 | C4.18(C2xC3:D4) | 192,753 |
C4.19(C2×C3⋊D4) = D8.9D6 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | 4- | C4.19(C2xC3:D4) | 192,754 |
C4.20(C2×C3⋊D4) = C22×D4⋊S3 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.20(C2xC3:D4) | 192,1351 |
C4.21(C2×C3⋊D4) = C2×D12⋊6C22 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 48 | | C4.21(C2xC3:D4) | 192,1352 |
C4.22(C2×C3⋊D4) = C22×D4.S3 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.22(C2xC3:D4) | 192,1353 |
C4.23(C2×C3⋊D4) = C2×C23.12D6 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.23(C2xC3:D4) | 192,1356 |
C4.24(C2×C3⋊D4) = C22×Q8⋊2S3 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.24(C2xC3:D4) | 192,1366 |
C4.25(C2×C3⋊D4) = C2×Q8.11D6 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.25(C2xC3:D4) | 192,1367 |
C4.26(C2×C3⋊D4) = C22×C3⋊Q16 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 192 | | C4.26(C2xC3:D4) | 192,1368 |
C4.27(C2×C3⋊D4) = C2×Dic3⋊Q8 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 192 | | C4.27(C2xC3:D4) | 192,1369 |
C4.28(C2×C3⋊D4) = C2×C12.23D4 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.28(C2xC3:D4) | 192,1373 |
C4.29(C2×C3⋊D4) = C2×D4⋊D6 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 48 | | C4.29(C2xC3:D4) | 192,1379 |
C4.30(C2×C3⋊D4) = C2×Q8.13D6 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.30(C2xC3:D4) | 192,1380 |
C4.31(C2×C3⋊D4) = C2×Q8.14D6 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.31(C2xC3:D4) | 192,1382 |
C4.32(C2×C3⋊D4) = C6.1052- 1+4 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.32(C2xC3:D4) | 192,1384 |
C4.33(C2×C3⋊D4) = C6.1462+ 1+4 | φ: C2×C3⋊D4/C2×Dic3 → C2 ⊆ Aut C4 | 48 | | C4.33(C2xC3:D4) | 192,1389 |
C4.34(C2×C3⋊D4) = Dic3⋊D8 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.34(C2xC3:D4) | 192,709 |
C4.35(C2×C3⋊D4) = (C6×D8).C2 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.35(C2xC3:D4) | 192,712 |
C4.36(C2×C3⋊D4) = D12⋊D4 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 48 | | C4.36(C2xC3:D4) | 192,715 |
C4.37(C2×C3⋊D4) = Dic6⋊D4 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.37(C2xC3:D4) | 192,717 |
C4.38(C2×C3⋊D4) = Dic3⋊3SD16 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.38(C2xC3:D4) | 192,721 |
C4.39(C2×C3⋊D4) = Dic3⋊5SD16 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.39(C2xC3:D4) | 192,722 |
C4.40(C2×C3⋊D4) = (C3×D4).D4 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.40(C2xC3:D4) | 192,724 |
C4.41(C2×C3⋊D4) = (C3×Q8).D4 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.41(C2xC3:D4) | 192,725 |
C4.42(C2×C3⋊D4) = D6⋊6SD16 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 48 | | C4.42(C2xC3:D4) | 192,728 |
C4.43(C2×C3⋊D4) = D6⋊8SD16 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.43(C2xC3:D4) | 192,729 |
C4.44(C2×C3⋊D4) = D12⋊7D4 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.44(C2xC3:D4) | 192,731 |
C4.45(C2×C3⋊D4) = Dic6.16D4 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.45(C2xC3:D4) | 192,732 |
C4.46(C2×C3⋊D4) = Dic3⋊3Q16 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 192 | | C4.46(C2xC3:D4) | 192,741 |
C4.47(C2×C3⋊D4) = (C2×Q16)⋊S3 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.47(C2xC3:D4) | 192,744 |
C4.48(C2×C3⋊D4) = D6⋊5Q16 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.48(C2xC3:D4) | 192,745 |
C4.49(C2×C3⋊D4) = D12.17D4 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.49(C2xC3:D4) | 192,746 |
C4.50(C2×C3⋊D4) = D12⋊18D4 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 24 | 8+ | C4.50(C2xC3:D4) | 192,757 |
C4.51(C2×C3⋊D4) = M4(2).D6 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 48 | 8+ | C4.51(C2xC3:D4) | 192,758 |
C4.52(C2×C3⋊D4) = M4(2).13D6 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 48 | 8- | C4.52(C2xC3:D4) | 192,759 |
C4.53(C2×C3⋊D4) = D12.38D4 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 48 | 8- | C4.53(C2xC3:D4) | 192,760 |
C4.54(C2×C3⋊D4) = D12.39D4 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 48 | 8+ | C4.54(C2xC3:D4) | 192,761 |
C4.55(C2×C3⋊D4) = M4(2).15D6 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 48 | 8+ | C4.55(C2xC3:D4) | 192,762 |
C4.56(C2×C3⋊D4) = M4(2).16D6 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 96 | 8- | C4.56(C2xC3:D4) | 192,763 |
C4.57(C2×C3⋊D4) = D12.40D4 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 48 | 8- | C4.57(C2xC3:D4) | 192,764 |
C4.58(C2×C3⋊D4) = (C2×C6)⋊8D8 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 48 | | C4.58(C2xC3:D4) | 192,776 |
C4.59(C2×C3⋊D4) = (C3×D4).31D4 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 48 | | C4.59(C2xC3:D4) | 192,777 |
C4.60(C2×C3⋊D4) = (C3×Q8)⋊13D4 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.60(C2xC3:D4) | 192,786 |
C4.61(C2×C3⋊D4) = (C2×C6)⋊8Q16 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.61(C2xC3:D4) | 192,787 |
C4.62(C2×C3⋊D4) = (C3×D4)⋊14D4 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.62(C2xC3:D4) | 192,797 |
C4.63(C2×C3⋊D4) = (C3×D4).32D4 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.63(C2xC3:D4) | 192,798 |
C4.64(C2×C3⋊D4) = 2+ 1+4⋊6S3 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 24 | 8+ | C4.64(C2xC3:D4) | 192,800 |
C4.65(C2×C3⋊D4) = 2+ 1+4.4S3 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 48 | 8- | C4.65(C2xC3:D4) | 192,801 |
C4.66(C2×C3⋊D4) = 2- 1+4⋊4S3 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 48 | 8+ | C4.66(C2xC3:D4) | 192,804 |
C4.67(C2×C3⋊D4) = 2- 1+4.2S3 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 48 | 8- | C4.67(C2xC3:D4) | 192,805 |
C4.68(C2×C3⋊D4) = C24.53D6 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 48 | | C4.68(C2xC3:D4) | 192,1365 |
C4.69(C2×C3⋊D4) = Q8×C3⋊D4 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.69(C2xC3:D4) | 192,1374 |
C4.70(C2×C3⋊D4) = C6.452- 1+4 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.70(C2xC3:D4) | 192,1376 |
C4.71(C2×C3⋊D4) = C6.1042- 1+4 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.71(C2xC3:D4) | 192,1383 |
C4.72(C2×C3⋊D4) = C6.1452+ 1+4 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 48 | | C4.72(C2xC3:D4) | 192,1388 |
C4.73(C2×C3⋊D4) = C6.1072- 1+4 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.73(C2xC3:D4) | 192,1390 |
C4.74(C2×C3⋊D4) = C6.1482+ 1+4 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 96 | | C4.74(C2xC3:D4) | 192,1393 |
C4.75(C2×C3⋊D4) = D12.32C23 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 48 | 8+ | C4.75(C2xC3:D4) | 192,1394 |
C4.76(C2×C3⋊D4) = D12.33C23 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 48 | 8- | C4.76(C2xC3:D4) | 192,1395 |
C4.77(C2×C3⋊D4) = D12.34C23 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 48 | 8+ | C4.77(C2xC3:D4) | 192,1396 |
C4.78(C2×C3⋊D4) = D12.35C23 | φ: C2×C3⋊D4/C3⋊D4 → C2 ⊆ Aut C4 | 96 | 8- | C4.78(C2xC3:D4) | 192,1397 |
C4.79(C2×C3⋊D4) = D6⋊3D8 | φ: C2×C3⋊D4/C22×S3 → C2 ⊆ Aut C4 | 96 | | C4.79(C2xC3:D4) | 192,716 |
C4.80(C2×C3⋊D4) = C24⋊12D4 | φ: C2×C3⋊D4/C22×S3 → C2 ⊆ Aut C4 | 96 | | C4.80(C2xC3:D4) | 192,718 |
C4.81(C2×C3⋊D4) = C24.23D4 | φ: C2×C3⋊D4/C22×S3 → C2 ⊆ Aut C4 | 48 | 4 | C4.81(C2xC3:D4) | 192,719 |
C4.82(C2×C3⋊D4) = C24⋊14D4 | φ: C2×C3⋊D4/C22×S3 → C2 ⊆ Aut C4 | 96 | | C4.82(C2xC3:D4) | 192,730 |
C4.83(C2×C3⋊D4) = C24⋊8D4 | φ: C2×C3⋊D4/C22×S3 → C2 ⊆ Aut C4 | 96 | | C4.83(C2xC3:D4) | 192,733 |
C4.84(C2×C3⋊D4) = C24.44D4 | φ: C2×C3⋊D4/C22×S3 → C2 ⊆ Aut C4 | 48 | 4 | C4.84(C2xC3:D4) | 192,736 |
C4.85(C2×C3⋊D4) = D6⋊3Q16 | φ: C2×C3⋊D4/C22×S3 → C2 ⊆ Aut C4 | 96 | | C4.85(C2xC3:D4) | 192,747 |
C4.86(C2×C3⋊D4) = C24.36D4 | φ: C2×C3⋊D4/C22×S3 → C2 ⊆ Aut C4 | 96 | | C4.86(C2xC3:D4) | 192,748 |
C4.87(C2×C3⋊D4) = C24.29D4 | φ: C2×C3⋊D4/C22×S3 → C2 ⊆ Aut C4 | 96 | 4 | C4.87(C2xC3:D4) | 192,751 |
C4.88(C2×C3⋊D4) = C2×D4⋊Dic3 | φ: C2×C3⋊D4/C22×S3 → C2 ⊆ Aut C4 | 96 | | C4.88(C2xC3:D4) | 192,773 |
C4.89(C2×C3⋊D4) = (C6×D4)⋊6C4 | φ: C2×C3⋊D4/C22×S3 → C2 ⊆ Aut C4 | 48 | | C4.89(C2xC3:D4) | 192,774 |
C4.90(C2×C3⋊D4) = C2×C12.D4 | φ: C2×C3⋊D4/C22×S3 → C2 ⊆ Aut C4 | 48 | | C4.90(C2xC3:D4) | 192,775 |
C4.91(C2×C3⋊D4) = C2×Q8⋊2Dic3 | φ: C2×C3⋊D4/C22×S3 → C2 ⊆ Aut C4 | 192 | | C4.91(C2xC3:D4) | 192,783 |
C4.92(C2×C3⋊D4) = (C6×Q8)⋊6C4 | φ: C2×C3⋊D4/C22×S3 → C2 ⊆ Aut C4 | 96 | | C4.92(C2xC3:D4) | 192,784 |
C4.93(C2×C3⋊D4) = C2×C12.10D4 | φ: C2×C3⋊D4/C22×S3 → C2 ⊆ Aut C4 | 96 | | C4.93(C2xC3:D4) | 192,785 |
C4.94(C2×C3⋊D4) = C4○D4⋊3Dic3 | φ: C2×C3⋊D4/C22×S3 → C2 ⊆ Aut C4 | 96 | | C4.94(C2xC3:D4) | 192,791 |
C4.95(C2×C3⋊D4) = C4○D4⋊4Dic3 | φ: C2×C3⋊D4/C22×S3 → C2 ⊆ Aut C4 | 96 | | C4.95(C2xC3:D4) | 192,792 |
C4.96(C2×C3⋊D4) = (C6×D4).16C4 | φ: C2×C3⋊D4/C22×S3 → C2 ⊆ Aut C4 | 48 | 4 | C4.96(C2xC3:D4) | 192,796 |
C4.97(C2×C3⋊D4) = C24.52D6 | φ: C2×C3⋊D4/C22×S3 → C2 ⊆ Aut C4 | 48 | | C4.97(C2xC3:D4) | 192,1364 |
C4.98(C2×C3⋊D4) = C2×D6⋊3Q8 | φ: C2×C3⋊D4/C22×S3 → C2 ⊆ Aut C4 | 96 | | C4.98(C2xC3:D4) | 192,1372 |
C4.99(C2×C3⋊D4) = C6.442- 1+4 | φ: C2×C3⋊D4/C22×S3 → C2 ⊆ Aut C4 | 96 | | C4.99(C2xC3:D4) | 192,1375 |
C4.100(C2×C3⋊D4) = (C2×D4)⋊43D6 | φ: C2×C3⋊D4/C22×S3 → C2 ⊆ Aut C4 | 48 | | C4.100(C2xC3:D4) | 192,1387 |
C4.101(C2×C3⋊D4) = C6.1082- 1+4 | φ: C2×C3⋊D4/C22×S3 → C2 ⊆ Aut C4 | 96 | | C4.101(C2xC3:D4) | 192,1392 |
C4.102(C2×C3⋊D4) = C2×C2.Dic12 | φ: C2×C3⋊D4/C22×C6 → C2 ⊆ Aut C4 | 192 | | C4.102(C2xC3:D4) | 192,662 |
C4.103(C2×C3⋊D4) = C2×C2.D24 | φ: C2×C3⋊D4/C22×C6 → C2 ⊆ Aut C4 | 96 | | C4.103(C2xC3:D4) | 192,671 |
C4.104(C2×C3⋊D4) = C23.28D12 | φ: C2×C3⋊D4/C22×C6 → C2 ⊆ Aut C4 | 96 | | C4.104(C2xC3:D4) | 192,672 |
C4.105(C2×C3⋊D4) = C24⋊30D4 | φ: C2×C3⋊D4/C22×C6 → C2 ⊆ Aut C4 | 96 | | C4.105(C2xC3:D4) | 192,673 |
C4.106(C2×C3⋊D4) = C24⋊29D4 | φ: C2×C3⋊D4/C22×C6 → C2 ⊆ Aut C4 | 96 | | C4.106(C2xC3:D4) | 192,674 |
C4.107(C2×C3⋊D4) = C24.82D4 | φ: C2×C3⋊D4/C22×C6 → C2 ⊆ Aut C4 | 96 | | C4.107(C2xC3:D4) | 192,675 |
C4.108(C2×C3⋊D4) = C23.51D12 | φ: C2×C3⋊D4/C22×C6 → C2 ⊆ Aut C4 | 96 | | C4.108(C2xC3:D4) | 192,679 |
C4.109(C2×C3⋊D4) = C2×C12.46D4 | φ: C2×C3⋊D4/C22×C6 → C2 ⊆ Aut C4 | 48 | | C4.109(C2xC3:D4) | 192,689 |
C4.110(C2×C3⋊D4) = C23.53D12 | φ: C2×C3⋊D4/C22×C6 → C2 ⊆ Aut C4 | 48 | | C4.110(C2xC3:D4) | 192,690 |
C4.111(C2×C3⋊D4) = M4(2).31D6 | φ: C2×C3⋊D4/C22×C6 → C2 ⊆ Aut C4 | 48 | 4 | C4.111(C2xC3:D4) | 192,691 |
C4.112(C2×C3⋊D4) = C23.54D12 | φ: C2×C3⋊D4/C22×C6 → C2 ⊆ Aut C4 | 96 | | C4.112(C2xC3:D4) | 192,692 |
C4.113(C2×C3⋊D4) = C24⋊2D4 | φ: C2×C3⋊D4/C22×C6 → C2 ⊆ Aut C4 | 96 | | C4.113(C2xC3:D4) | 192,693 |
C4.114(C2×C3⋊D4) = C24⋊3D4 | φ: C2×C3⋊D4/C22×C6 → C2 ⊆ Aut C4 | 96 | | C4.114(C2xC3:D4) | 192,694 |
C4.115(C2×C3⋊D4) = C2×C12.47D4 | φ: C2×C3⋊D4/C22×C6 → C2 ⊆ Aut C4 | 96 | | C4.115(C2xC3:D4) | 192,695 |
C4.116(C2×C3⋊D4) = C24.4D4 | φ: C2×C3⋊D4/C22×C6 → C2 ⊆ Aut C4 | 96 | | C4.116(C2xC3:D4) | 192,696 |
C4.117(C2×C3⋊D4) = Q8.8D12 | φ: C2×C3⋊D4/C22×C6 → C2 ⊆ Aut C4 | 48 | 4 | C4.117(C2xC3:D4) | 192,700 |
C4.118(C2×C3⋊D4) = Q8.9D12 | φ: C2×C3⋊D4/C22×C6 → C2 ⊆ Aut C4 | 48 | 4+ | C4.118(C2xC3:D4) | 192,701 |
C4.119(C2×C3⋊D4) = Q8.10D12 | φ: C2×C3⋊D4/C22×C6 → C2 ⊆ Aut C4 | 96 | 4- | C4.119(C2xC3:D4) | 192,702 |
C4.120(C2×C3⋊D4) = C2×C12.48D4 | φ: C2×C3⋊D4/C22×C6 → C2 ⊆ Aut C4 | 96 | | C4.120(C2xC3:D4) | 192,1343 |
C4.121(C2×C3⋊D4) = C12.C24 | φ: C2×C3⋊D4/C22×C6 → C2 ⊆ Aut C4 | 48 | 4 | C4.121(C2xC3:D4) | 192,1381 |
C4.122(C2×C3⋊D4) = C2×Dic3⋊C8 | central extension (φ=1) | 192 | | C4.122(C2xC3:D4) | 192,658 |
C4.123(C2×C3⋊D4) = Dic3⋊C8⋊C2 | central extension (φ=1) | 96 | | C4.123(C2xC3:D4) | 192,661 |
C4.124(C2×C3⋊D4) = C2×D6⋊C8 | central extension (φ=1) | 96 | | C4.124(C2xC3:D4) | 192,667 |
C4.125(C2×C3⋊D4) = C8×C3⋊D4 | central extension (φ=1) | 96 | | C4.125(C2xC3:D4) | 192,668 |
C4.126(C2×C3⋊D4) = (C22×C8)⋊7S3 | central extension (φ=1) | 96 | | C4.126(C2xC3:D4) | 192,669 |
C4.127(C2×C3⋊D4) = C24⋊33D4 | central extension (φ=1) | 96 | | C4.127(C2xC3:D4) | 192,670 |
C4.128(C2×C3⋊D4) = Dic3⋊4M4(2) | central extension (φ=1) | 96 | | C4.128(C2xC3:D4) | 192,677 |
C4.129(C2×C3⋊D4) = C12.88(C2×Q8) | central extension (φ=1) | 96 | | C4.129(C2xC3:D4) | 192,678 |
C4.130(C2×C3⋊D4) = C2×C12.53D4 | central extension (φ=1) | 96 | | C4.130(C2xC3:D4) | 192,682 |
C4.131(C2×C3⋊D4) = C23.8Dic6 | central extension (φ=1) | 48 | 4 | C4.131(C2xC3:D4) | 192,683 |
C4.132(C2×C3⋊D4) = D6⋊6M4(2) | central extension (φ=1) | 48 | | C4.132(C2xC3:D4) | 192,685 |
C4.133(C2×C3⋊D4) = C24⋊D4 | central extension (φ=1) | 96 | | C4.133(C2xC3:D4) | 192,686 |
C4.134(C2×C3⋊D4) = C24⋊21D4 | central extension (φ=1) | 96 | | C4.134(C2xC3:D4) | 192,687 |
C4.135(C2×C3⋊D4) = D6⋊C8⋊40C2 | central extension (φ=1) | 96 | | C4.135(C2xC3:D4) | 192,688 |
C4.136(C2×C3⋊D4) = C2×D12⋊C4 | central extension (φ=1) | 48 | | C4.136(C2xC3:D4) | 192,697 |
C4.137(C2×C3⋊D4) = M4(2)⋊24D6 | central extension (φ=1) | 48 | 4 | C4.137(C2xC3:D4) | 192,698 |
C4.138(C2×C3⋊D4) = C24.100D4 | central extension (φ=1) | 48 | 4 | C4.138(C2xC3:D4) | 192,703 |
C4.139(C2×C3⋊D4) = C24.54D4 | central extension (φ=1) | 48 | 4 | C4.139(C2xC3:D4) | 192,704 |
C4.140(C2×C3⋊D4) = C2×C12.55D4 | central extension (φ=1) | 96 | | C4.140(C2xC3:D4) | 192,765 |
C4.141(C2×C3⋊D4) = C24.6Dic3 | central extension (φ=1) | 48 | | C4.141(C2xC3:D4) | 192,766 |
C4.142(C2×C3⋊D4) = (C6×D4).11C4 | central extension (φ=1) | 96 | | C4.142(C2xC3:D4) | 192,793 |
C4.143(C2×C3⋊D4) = C2×Q8⋊3Dic3 | central extension (φ=1) | 48 | | C4.143(C2xC3:D4) | 192,794 |
C4.144(C2×C3⋊D4) = (C6×D4)⋊9C4 | central extension (φ=1) | 48 | 4 | C4.144(C2xC3:D4) | 192,795 |
C4.145(C2×C3⋊D4) = C24.83D6 | central extension (φ=1) | 48 | | C4.145(C2xC3:D4) | 192,1350 |
C4.146(C2×C3⋊D4) = (C2×C12)⋊17D4 | central extension (φ=1) | 96 | | C4.146(C2xC3:D4) | 192,1391 |