# Extensions 1→N→G→Q→1 with N=C4 and Q=C2×C3⋊D4

Direct product G=N×Q with N=C4 and Q=C2×C3⋊D4
dρLabelID
C2×C4×C3⋊D496C2xC4xC3:D4192,1347

Semidirect products G=N:Q with N=C4 and Q=C2×C3⋊D4
extensionφ:Q→Aut NdρLabelID
C41(C2×C3⋊D4) = C2×C123D4φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C496C4:1(C2xC3:D4)192,1362
C42(C2×C3⋊D4) = D4×C3⋊D4φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C448C4:2(C2xC3:D4)192,1360
C43(C2×C3⋊D4) = C2×D63D4φ: C2×C3⋊D4/C22×S3C2 ⊆ Aut C496C4:3(C2xC3:D4)192,1359
C44(C2×C3⋊D4) = C2×C127D4φ: C2×C3⋊D4/C22×C6C2 ⊆ Aut C496C4:4(C2xC3:D4)192,1349

Non-split extensions G=N.Q with N=C4 and Q=C2×C3⋊D4
extensionφ:Q→Aut NdρLabelID
C4.1(C2×C3⋊D4) = C2×C3⋊D16φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C496C4.1(C2xC3:D4)192,705
C4.2(C2×C3⋊D4) = D8.D6φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C4484C4.2(C2xC3:D4)192,706
C4.3(C2×C3⋊D4) = C2×D8.S3φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C496C4.3(C2xC3:D4)192,707
C4.4(C2×C3⋊D4) = C245D4φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C496C4.4(C2xC3:D4)192,710
C4.5(C2×C3⋊D4) = C2411D4φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C496C4.5(C2xC3:D4)192,713
C4.6(C2×C3⋊D4) = C24.22D4φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C496C4.6(C2xC3:D4)192,714
C4.7(C2×C3⋊D4) = C24.31D4φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C496C4.7(C2xC3:D4)192,726
C4.8(C2×C3⋊D4) = C24.43D4φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C496C4.8(C2xC3:D4)192,727
C4.9(C2×C3⋊D4) = C2415D4φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C496C4.9(C2xC3:D4)192,734
C4.10(C2×C3⋊D4) = C249D4φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C496C4.10(C2xC3:D4)192,735
C4.11(C2×C3⋊D4) = C2×C8.6D6φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C496C4.11(C2xC3:D4)192,737
C4.12(C2×C3⋊D4) = C24.27C23φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C4964C4.12(C2xC3:D4)192,738
C4.13(C2×C3⋊D4) = C2×C3⋊Q32φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C4192C4.13(C2xC3:D4)192,739
C4.14(C2×C3⋊D4) = C24.26D4φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C4192C4.14(C2xC3:D4)192,742
C4.15(C2×C3⋊D4) = C24.37D4φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C496C4.15(C2xC3:D4)192,749
C4.16(C2×C3⋊D4) = C24.28D4φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C496C4.16(C2xC3:D4)192,750
C4.17(C2×C3⋊D4) = Q16⋊D6φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C4484+C4.17(C2xC3:D4)192,752
C4.18(C2×C3⋊D4) = Q16.D6φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C4964C4.18(C2xC3:D4)192,753
C4.19(C2×C3⋊D4) = D8.9D6φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C4964-C4.19(C2xC3:D4)192,754
C4.20(C2×C3⋊D4) = C22×D4⋊S3φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C496C4.20(C2xC3:D4)192,1351
C4.21(C2×C3⋊D4) = C2×D126C22φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C448C4.21(C2xC3:D4)192,1352
C4.22(C2×C3⋊D4) = C22×D4.S3φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C496C4.22(C2xC3:D4)192,1353
C4.23(C2×C3⋊D4) = C2×C23.12D6φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C496C4.23(C2xC3:D4)192,1356
C4.24(C2×C3⋊D4) = C22×Q82S3φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C496C4.24(C2xC3:D4)192,1366
C4.25(C2×C3⋊D4) = C2×Q8.11D6φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C496C4.25(C2xC3:D4)192,1367
C4.26(C2×C3⋊D4) = C22×C3⋊Q16φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C4192C4.26(C2xC3:D4)192,1368
C4.27(C2×C3⋊D4) = C2×Dic3⋊Q8φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C4192C4.27(C2xC3:D4)192,1369
C4.28(C2×C3⋊D4) = C2×C12.23D4φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C496C4.28(C2xC3:D4)192,1373
C4.29(C2×C3⋊D4) = C2×D4⋊D6φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C448C4.29(C2xC3:D4)192,1379
C4.30(C2×C3⋊D4) = C2×Q8.13D6φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C496C4.30(C2xC3:D4)192,1380
C4.31(C2×C3⋊D4) = C2×Q8.14D6φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C496C4.31(C2xC3:D4)192,1382
C4.32(C2×C3⋊D4) = C6.1052- 1+4φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C496C4.32(C2xC3:D4)192,1384
C4.33(C2×C3⋊D4) = C6.1462+ 1+4φ: C2×C3⋊D4/C2×Dic3C2 ⊆ Aut C448C4.33(C2xC3:D4)192,1389
C4.34(C2×C3⋊D4) = Dic3⋊D8φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C496C4.34(C2xC3:D4)192,709
C4.35(C2×C3⋊D4) = (C6×D8).C2φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C496C4.35(C2xC3:D4)192,712
C4.36(C2×C3⋊D4) = D12⋊D4φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C448C4.36(C2xC3:D4)192,715
C4.37(C2×C3⋊D4) = Dic6⋊D4φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C496C4.37(C2xC3:D4)192,717
C4.38(C2×C3⋊D4) = Dic33SD16φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C496C4.38(C2xC3:D4)192,721
C4.39(C2×C3⋊D4) = Dic35SD16φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C496C4.39(C2xC3:D4)192,722
C4.40(C2×C3⋊D4) = (C3×D4).D4φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C496C4.40(C2xC3:D4)192,724
C4.41(C2×C3⋊D4) = (C3×Q8).D4φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C496C4.41(C2xC3:D4)192,725
C4.42(C2×C3⋊D4) = D66SD16φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C448C4.42(C2xC3:D4)192,728
C4.43(C2×C3⋊D4) = D68SD16φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C496C4.43(C2xC3:D4)192,729
C4.44(C2×C3⋊D4) = D127D4φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C496C4.44(C2xC3:D4)192,731
C4.45(C2×C3⋊D4) = Dic6.16D4φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C496C4.45(C2xC3:D4)192,732
C4.46(C2×C3⋊D4) = Dic33Q16φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C4192C4.46(C2xC3:D4)192,741
C4.47(C2×C3⋊D4) = (C2×Q16)⋊S3φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C496C4.47(C2xC3:D4)192,744
C4.48(C2×C3⋊D4) = D65Q16φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C496C4.48(C2xC3:D4)192,745
C4.49(C2×C3⋊D4) = D12.17D4φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C496C4.49(C2xC3:D4)192,746
C4.50(C2×C3⋊D4) = D1218D4φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C4248+C4.50(C2xC3:D4)192,757
C4.51(C2×C3⋊D4) = M4(2).D6φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C4488+C4.51(C2xC3:D4)192,758
C4.52(C2×C3⋊D4) = M4(2).13D6φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C4488-C4.52(C2xC3:D4)192,759
C4.53(C2×C3⋊D4) = D12.38D4φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C4488-C4.53(C2xC3:D4)192,760
C4.54(C2×C3⋊D4) = D12.39D4φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C4488+C4.54(C2xC3:D4)192,761
C4.55(C2×C3⋊D4) = M4(2).15D6φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C4488+C4.55(C2xC3:D4)192,762
C4.56(C2×C3⋊D4) = M4(2).16D6φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C4968-C4.56(C2xC3:D4)192,763
C4.57(C2×C3⋊D4) = D12.40D4φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C4488-C4.57(C2xC3:D4)192,764
C4.58(C2×C3⋊D4) = (C2×C6)⋊8D8φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C448C4.58(C2xC3:D4)192,776
C4.59(C2×C3⋊D4) = (C3×D4).31D4φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C448C4.59(C2xC3:D4)192,777
C4.60(C2×C3⋊D4) = (C3×Q8)⋊13D4φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C496C4.60(C2xC3:D4)192,786
C4.61(C2×C3⋊D4) = (C2×C6)⋊8Q16φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C496C4.61(C2xC3:D4)192,787
C4.62(C2×C3⋊D4) = (C3×D4)⋊14D4φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C496C4.62(C2xC3:D4)192,797
C4.63(C2×C3⋊D4) = (C3×D4).32D4φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C496C4.63(C2xC3:D4)192,798
C4.64(C2×C3⋊D4) = 2+ 1+46S3φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C4248+C4.64(C2xC3:D4)192,800
C4.65(C2×C3⋊D4) = 2+ 1+4.4S3φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C4488-C4.65(C2xC3:D4)192,801
C4.66(C2×C3⋊D4) = 2- 1+44S3φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C4488+C4.66(C2xC3:D4)192,804
C4.67(C2×C3⋊D4) = 2- 1+4.2S3φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C4488-C4.67(C2xC3:D4)192,805
C4.68(C2×C3⋊D4) = C24.53D6φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C448C4.68(C2xC3:D4)192,1365
C4.69(C2×C3⋊D4) = Q8×C3⋊D4φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C496C4.69(C2xC3:D4)192,1374
C4.70(C2×C3⋊D4) = C6.452- 1+4φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C496C4.70(C2xC3:D4)192,1376
C4.71(C2×C3⋊D4) = C6.1042- 1+4φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C496C4.71(C2xC3:D4)192,1383
C4.72(C2×C3⋊D4) = C6.1452+ 1+4φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C448C4.72(C2xC3:D4)192,1388
C4.73(C2×C3⋊D4) = C6.1072- 1+4φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C496C4.73(C2xC3:D4)192,1390
C4.74(C2×C3⋊D4) = C6.1482+ 1+4φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C496C4.74(C2xC3:D4)192,1393
C4.75(C2×C3⋊D4) = D12.32C23φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C4488+C4.75(C2xC3:D4)192,1394
C4.76(C2×C3⋊D4) = D12.33C23φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C4488-C4.76(C2xC3:D4)192,1395
C4.77(C2×C3⋊D4) = D12.34C23φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C4488+C4.77(C2xC3:D4)192,1396
C4.78(C2×C3⋊D4) = D12.35C23φ: C2×C3⋊D4/C3⋊D4C2 ⊆ Aut C4968-C4.78(C2xC3:D4)192,1397
C4.79(C2×C3⋊D4) = D63D8φ: C2×C3⋊D4/C22×S3C2 ⊆ Aut C496C4.79(C2xC3:D4)192,716
C4.80(C2×C3⋊D4) = C2412D4φ: C2×C3⋊D4/C22×S3C2 ⊆ Aut C496C4.80(C2xC3:D4)192,718
C4.81(C2×C3⋊D4) = C24.23D4φ: C2×C3⋊D4/C22×S3C2 ⊆ Aut C4484C4.81(C2xC3:D4)192,719
C4.82(C2×C3⋊D4) = C2414D4φ: C2×C3⋊D4/C22×S3C2 ⊆ Aut C496C4.82(C2xC3:D4)192,730
C4.83(C2×C3⋊D4) = C248D4φ: C2×C3⋊D4/C22×S3C2 ⊆ Aut C496C4.83(C2xC3:D4)192,733
C4.84(C2×C3⋊D4) = C24.44D4φ: C2×C3⋊D4/C22×S3C2 ⊆ Aut C4484C4.84(C2xC3:D4)192,736
C4.85(C2×C3⋊D4) = D63Q16φ: C2×C3⋊D4/C22×S3C2 ⊆ Aut C496C4.85(C2xC3:D4)192,747
C4.86(C2×C3⋊D4) = C24.36D4φ: C2×C3⋊D4/C22×S3C2 ⊆ Aut C496C4.86(C2xC3:D4)192,748
C4.87(C2×C3⋊D4) = C24.29D4φ: C2×C3⋊D4/C22×S3C2 ⊆ Aut C4964C4.87(C2xC3:D4)192,751
C4.88(C2×C3⋊D4) = C2×D4⋊Dic3φ: C2×C3⋊D4/C22×S3C2 ⊆ Aut C496C4.88(C2xC3:D4)192,773
C4.89(C2×C3⋊D4) = (C6×D4)⋊6C4φ: C2×C3⋊D4/C22×S3C2 ⊆ Aut C448C4.89(C2xC3:D4)192,774
C4.90(C2×C3⋊D4) = C2×C12.D4φ: C2×C3⋊D4/C22×S3C2 ⊆ Aut C448C4.90(C2xC3:D4)192,775
C4.91(C2×C3⋊D4) = C2×Q82Dic3φ: C2×C3⋊D4/C22×S3C2 ⊆ Aut C4192C4.91(C2xC3:D4)192,783
C4.92(C2×C3⋊D4) = (C6×Q8)⋊6C4φ: C2×C3⋊D4/C22×S3C2 ⊆ Aut C496C4.92(C2xC3:D4)192,784
C4.93(C2×C3⋊D4) = C2×C12.10D4φ: C2×C3⋊D4/C22×S3C2 ⊆ Aut C496C4.93(C2xC3:D4)192,785
C4.94(C2×C3⋊D4) = C4○D43Dic3φ: C2×C3⋊D4/C22×S3C2 ⊆ Aut C496C4.94(C2xC3:D4)192,791
C4.95(C2×C3⋊D4) = C4○D44Dic3φ: C2×C3⋊D4/C22×S3C2 ⊆ Aut C496C4.95(C2xC3:D4)192,792
C4.96(C2×C3⋊D4) = (C6×D4).16C4φ: C2×C3⋊D4/C22×S3C2 ⊆ Aut C4484C4.96(C2xC3:D4)192,796
C4.97(C2×C3⋊D4) = C24.52D6φ: C2×C3⋊D4/C22×S3C2 ⊆ Aut C448C4.97(C2xC3:D4)192,1364
C4.98(C2×C3⋊D4) = C2×D63Q8φ: C2×C3⋊D4/C22×S3C2 ⊆ Aut C496C4.98(C2xC3:D4)192,1372
C4.99(C2×C3⋊D4) = C6.442- 1+4φ: C2×C3⋊D4/C22×S3C2 ⊆ Aut C496C4.99(C2xC3:D4)192,1375
C4.100(C2×C3⋊D4) = (C2×D4)⋊43D6φ: C2×C3⋊D4/C22×S3C2 ⊆ Aut C448C4.100(C2xC3:D4)192,1387
C4.101(C2×C3⋊D4) = C6.1082- 1+4φ: C2×C3⋊D4/C22×S3C2 ⊆ Aut C496C4.101(C2xC3:D4)192,1392
C4.102(C2×C3⋊D4) = C2×C2.Dic12φ: C2×C3⋊D4/C22×C6C2 ⊆ Aut C4192C4.102(C2xC3:D4)192,662
C4.103(C2×C3⋊D4) = C2×C2.D24φ: C2×C3⋊D4/C22×C6C2 ⊆ Aut C496C4.103(C2xC3:D4)192,671
C4.104(C2×C3⋊D4) = C23.28D12φ: C2×C3⋊D4/C22×C6C2 ⊆ Aut C496C4.104(C2xC3:D4)192,672
C4.105(C2×C3⋊D4) = C2430D4φ: C2×C3⋊D4/C22×C6C2 ⊆ Aut C496C4.105(C2xC3:D4)192,673
C4.106(C2×C3⋊D4) = C2429D4φ: C2×C3⋊D4/C22×C6C2 ⊆ Aut C496C4.106(C2xC3:D4)192,674
C4.107(C2×C3⋊D4) = C24.82D4φ: C2×C3⋊D4/C22×C6C2 ⊆ Aut C496C4.107(C2xC3:D4)192,675
C4.108(C2×C3⋊D4) = C23.51D12φ: C2×C3⋊D4/C22×C6C2 ⊆ Aut C496C4.108(C2xC3:D4)192,679
C4.109(C2×C3⋊D4) = C2×C12.46D4φ: C2×C3⋊D4/C22×C6C2 ⊆ Aut C448C4.109(C2xC3:D4)192,689
C4.110(C2×C3⋊D4) = C23.53D12φ: C2×C3⋊D4/C22×C6C2 ⊆ Aut C448C4.110(C2xC3:D4)192,690
C4.111(C2×C3⋊D4) = M4(2).31D6φ: C2×C3⋊D4/C22×C6C2 ⊆ Aut C4484C4.111(C2xC3:D4)192,691
C4.112(C2×C3⋊D4) = C23.54D12φ: C2×C3⋊D4/C22×C6C2 ⊆ Aut C496C4.112(C2xC3:D4)192,692
C4.113(C2×C3⋊D4) = C242D4φ: C2×C3⋊D4/C22×C6C2 ⊆ Aut C496C4.113(C2xC3:D4)192,693
C4.114(C2×C3⋊D4) = C243D4φ: C2×C3⋊D4/C22×C6C2 ⊆ Aut C496C4.114(C2xC3:D4)192,694
C4.115(C2×C3⋊D4) = C2×C12.47D4φ: C2×C3⋊D4/C22×C6C2 ⊆ Aut C496C4.115(C2xC3:D4)192,695
C4.116(C2×C3⋊D4) = C24.4D4φ: C2×C3⋊D4/C22×C6C2 ⊆ Aut C496C4.116(C2xC3:D4)192,696
C4.117(C2×C3⋊D4) = Q8.8D12φ: C2×C3⋊D4/C22×C6C2 ⊆ Aut C4484C4.117(C2xC3:D4)192,700
C4.118(C2×C3⋊D4) = Q8.9D12φ: C2×C3⋊D4/C22×C6C2 ⊆ Aut C4484+C4.118(C2xC3:D4)192,701
C4.119(C2×C3⋊D4) = Q8.10D12φ: C2×C3⋊D4/C22×C6C2 ⊆ Aut C4964-C4.119(C2xC3:D4)192,702
C4.120(C2×C3⋊D4) = C2×C12.48D4φ: C2×C3⋊D4/C22×C6C2 ⊆ Aut C496C4.120(C2xC3:D4)192,1343
C4.121(C2×C3⋊D4) = C12.C24φ: C2×C3⋊D4/C22×C6C2 ⊆ Aut C4484C4.121(C2xC3:D4)192,1381
C4.122(C2×C3⋊D4) = C2×Dic3⋊C8central extension (φ=1)192C4.122(C2xC3:D4)192,658
C4.123(C2×C3⋊D4) = Dic3⋊C8⋊C2central extension (φ=1)96C4.123(C2xC3:D4)192,661
C4.124(C2×C3⋊D4) = C2×D6⋊C8central extension (φ=1)96C4.124(C2xC3:D4)192,667
C4.125(C2×C3⋊D4) = C8×C3⋊D4central extension (φ=1)96C4.125(C2xC3:D4)192,668
C4.126(C2×C3⋊D4) = (C22×C8)⋊7S3central extension (φ=1)96C4.126(C2xC3:D4)192,669
C4.127(C2×C3⋊D4) = C2433D4central extension (φ=1)96C4.127(C2xC3:D4)192,670
C4.128(C2×C3⋊D4) = Dic34M4(2)central extension (φ=1)96C4.128(C2xC3:D4)192,677
C4.129(C2×C3⋊D4) = C12.88(C2×Q8)central extension (φ=1)96C4.129(C2xC3:D4)192,678
C4.130(C2×C3⋊D4) = C2×C12.53D4central extension (φ=1)96C4.130(C2xC3:D4)192,682
C4.131(C2×C3⋊D4) = C23.8Dic6central extension (φ=1)484C4.131(C2xC3:D4)192,683
C4.132(C2×C3⋊D4) = D66M4(2)central extension (φ=1)48C4.132(C2xC3:D4)192,685
C4.133(C2×C3⋊D4) = C24⋊D4central extension (φ=1)96C4.133(C2xC3:D4)192,686
C4.134(C2×C3⋊D4) = C2421D4central extension (φ=1)96C4.134(C2xC3:D4)192,687
C4.135(C2×C3⋊D4) = D6⋊C840C2central extension (φ=1)96C4.135(C2xC3:D4)192,688
C4.136(C2×C3⋊D4) = C2×D12⋊C4central extension (φ=1)48C4.136(C2xC3:D4)192,697
C4.137(C2×C3⋊D4) = M4(2)⋊24D6central extension (φ=1)484C4.137(C2xC3:D4)192,698
C4.138(C2×C3⋊D4) = C24.100D4central extension (φ=1)484C4.138(C2xC3:D4)192,703
C4.139(C2×C3⋊D4) = C24.54D4central extension (φ=1)484C4.139(C2xC3:D4)192,704
C4.140(C2×C3⋊D4) = C2×C12.55D4central extension (φ=1)96C4.140(C2xC3:D4)192,765
C4.141(C2×C3⋊D4) = C24.6Dic3central extension (φ=1)48C4.141(C2xC3:D4)192,766
C4.142(C2×C3⋊D4) = (C6×D4).11C4central extension (φ=1)96C4.142(C2xC3:D4)192,793
C4.143(C2×C3⋊D4) = C2×Q83Dic3central extension (φ=1)48C4.143(C2xC3:D4)192,794
C4.144(C2×C3⋊D4) = (C6×D4)⋊9C4central extension (φ=1)484C4.144(C2xC3:D4)192,795
C4.145(C2×C3⋊D4) = C24.83D6central extension (φ=1)48C4.145(C2xC3:D4)192,1350
C4.146(C2×C3⋊D4) = (C2×C12)⋊17D4central extension (φ=1)96C4.146(C2xC3:D4)192,1391

׿
×
𝔽