extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC8).1D6 = C23.40D12 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).1D6 | 192,281 |
(C2xC8).2D6 = C23.15D12 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).2D6 | 192,282 |
(C2xC8).3D6 = D12:14D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).3D6 | 192,293 |
(C2xC8).4D6 = C22.D24 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).4D6 | 192,295 |
(C2xC8).5D6 = Dic6.32D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).5D6 | 192,298 |
(C2xC8).6D6 = Dic3.D8 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).6D6 | 192,318 |
(C2xC8).7D6 = D4.2Dic6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).7D6 | 192,325 |
(C2xC8).8D6 = Dic6.D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).8D6 | 192,326 |
(C2xC8).9D6 = D6.D8 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).9D6 | 192,333 |
(C2xC8).10D6 = D4.D12 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).10D6 | 192,342 |
(C2xC8).11D6 = C24:1C4:C2 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).11D6 | 192,343 |
(C2xC8).12D6 = D12:3D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).12D6 | 192,345 |
(C2xC8).13D6 = Q8:3Dic6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 192 | | (C2xC8).13D6 | 192,352 |
(C2xC8).14D6 = Dic3:Q16 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 192 | | (C2xC8).14D6 | 192,354 |
(C2xC8).15D6 = Q8.3Dic6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 192 | | (C2xC8).15D6 | 192,355 |
(C2xC8).16D6 = D6:Q16 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).16D6 | 192,368 |
(C2xC8).17D6 = Q8:4D12 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).17D6 | 192,369 |
(C2xC8).18D6 = D6.Q16 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).18D6 | 192,370 |
(C2xC8).19D6 = D6:C8.C2 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).19D6 | 192,373 |
(C2xC8).20D6 = D12.12D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).20D6 | 192,378 |
(C2xC8).21D6 = C4:D24 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).21D6 | 192,402 |
(C2xC8).22D6 = D12:4Q8 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).22D6 | 192,405 |
(C2xC8).23D6 = C4:Dic12 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 192 | | (C2xC8).23D6 | 192,408 |
(C2xC8).24D6 = Dic6:3Q8 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 192 | | (C2xC8).24D6 | 192,409 |
(C2xC8).25D6 = Dic3.Q16 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 192 | | (C2xC8).25D6 | 192,434 |
(C2xC8).26D6 = Dic6.2Q8 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 192 | | (C2xC8).26D6 | 192,436 |
(C2xC8).27D6 = D6.5D8 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).27D6 | 192,441 |
(C2xC8).28D6 = D6.2Q16 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).28D6 | 192,443 |
(C2xC8).29D6 = C2.D8:S3 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).29D6 | 192,444 |
(C2xC8).30D6 = C2.D8:7S3 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).30D6 | 192,447 |
(C2xC8).31D6 = D12:2Q8 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).31D6 | 192,449 |
(C2xC8).32D6 = D12.2Q8 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).32D6 | 192,450 |
(C2xC8).33D6 = Dic3:D8 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).33D6 | 192,709 |
(C2xC8).34D6 = (C6xD8).C2 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).34D6 | 192,712 |
(C2xC8).35D6 = Dic6:D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).35D6 | 192,717 |
(C2xC8).36D6 = Dic3:3Q16 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 192 | | (C2xC8).36D6 | 192,741 |
(C2xC8).37D6 = (C2xQ16):S3 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).37D6 | 192,744 |
(C2xC8).38D6 = D6:5Q16 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).38D6 | 192,745 |
(C2xC8).39D6 = D12.17D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).39D6 | 192,746 |
(C2xC8).40D6 = C8.Dic6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 48 | 4 | (C2xC8).40D6 | 192,46 |
(C2xC8).41D6 = D24:8C4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 48 | 4 | (C2xC8).41D6 | 192,47 |
(C2xC8).42D6 = C24.6Q8 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 48 | 4 | (C2xC8).42D6 | 192,53 |
(C2xC8).43D6 = D24.C4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 48 | 4+ | (C2xC8).43D6 | 192,54 |
(C2xC8).44D6 = C24.8D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | 4- | (C2xC8).44D6 | 192,55 |
(C2xC8).45D6 = C24.Q8 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 48 | 4 | (C2xC8).45D6 | 192,72 |
(C2xC8).46D6 = M5(2):S3 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 48 | 4+ | (C2xC8).46D6 | 192,75 |
(C2xC8).47D6 = C12.4D8 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | 4- | (C2xC8).47D6 | 192,76 |
(C2xC8).48D6 = D24:2C4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 48 | 4 | (C2xC8).48D6 | 192,77 |
(C2xC8).49D6 = D8.Dic3 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 48 | 4 | (C2xC8).49D6 | 192,122 |
(C2xC8).50D6 = Q16.Dic3 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | 4 | (C2xC8).50D6 | 192,124 |
(C2xC8).51D6 = D8:2Dic3 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 48 | 4 | (C2xC8).51D6 | 192,125 |
(C2xC8).52D6 = C8:Dic6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 192 | | (C2xC8).52D6 | 192,261 |
(C2xC8).53D6 = C42.16D6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).53D6 | 192,269 |
(C2xC8).54D6 = D24:C4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).54D6 | 192,270 |
(C2xC8).55D6 = C8:D12 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).55D6 | 192,271 |
(C2xC8).56D6 = C8.D12 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).56D6 | 192,274 |
(C2xC8).57D6 = Dic12:C4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 192 | | (C2xC8).57D6 | 192,275 |
(C2xC8).58D6 = Dic12:9C4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 192 | | (C2xC8).58D6 | 192,412 |
(C2xC8).59D6 = C24:3Q8 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 192 | | (C2xC8).59D6 | 192,415 |
(C2xC8).60D6 = C8:(C4xS3) | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).60D6 | 192,420 |
(C2xC8).61D6 = C24:7D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).61D6 | 192,424 |
(C2xC8).62D6 = C8.2D12 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).62D6 | 192,426 |
(C2xC8).63D6 = D24:9C4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).63D6 | 192,428 |
(C2xC8).64D6 = C24:4Q8 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 192 | | (C2xC8).64D6 | 192,435 |
(C2xC8).65D6 = C8:S3:C4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).65D6 | 192,440 |
(C2xC8).66D6 = C8:3D12 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).66D6 | 192,445 |
(C2xC8).67D6 = C24:C2:C4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).67D6 | 192,448 |
(C2xC8).68D6 = M4(2).25D6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 48 | 4 | (C2xC8).68D6 | 192,452 |
(C2xC8).69D6 = D24:10C4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 48 | 4 | (C2xC8).69D6 | 192,453 |
(C2xC8).70D6 = C24.18D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | 4- | (C2xC8).70D6 | 192,455 |
(C2xC8).71D6 = C24.19D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 48 | 4+ | (C2xC8).71D6 | 192,456 |
(C2xC8).72D6 = C24.42D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 48 | 4 | (C2xC8).72D6 | 192,457 |
(C2xC8).73D6 = C16:D6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 48 | 4+ | (C2xC8).73D6 | 192,467 |
(C2xC8).74D6 = C16.D6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | 4- | (C2xC8).74D6 | 192,468 |
(C2xC8).75D6 = C23.52D12 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).75D6 | 192,680 |
(C2xC8).76D6 = C23.9Dic6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 48 | 4 | (C2xC8).76D6 | 192,684 |
(C2xC8).77D6 = C24:2D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).77D6 | 192,693 |
(C2xC8).78D6 = C24:3D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).78D6 | 192,694 |
(C2xC8).79D6 = C24.4D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).79D6 | 192,696 |
(C2xC8).80D6 = Q8.8D12 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 48 | 4 | (C2xC8).80D6 | 192,700 |
(C2xC8).81D6 = Q8.9D12 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 48 | 4+ | (C2xC8).81D6 | 192,701 |
(C2xC8).82D6 = Q8.10D12 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | 4- | (C2xC8).82D6 | 192,702 |
(C2xC8).83D6 = D8.D6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 48 | 4 | (C2xC8).83D6 | 192,706 |
(C2xC8).84D6 = D8:Dic3 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).84D6 | 192,711 |
(C2xC8).85D6 = C24:11D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).85D6 | 192,713 |
(C2xC8).86D6 = C24:12D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).86D6 | 192,718 |
(C2xC8).87D6 = C24.23D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 48 | 4 | (C2xC8).87D6 | 192,719 |
(C2xC8).88D6 = SD16:Dic3 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).88D6 | 192,723 |
(C2xC8).89D6 = C24.31D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).89D6 | 192,726 |
(C2xC8).90D6 = C24:8D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).90D6 | 192,733 |
(C2xC8).91D6 = C24:9D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).91D6 | 192,735 |
(C2xC8).92D6 = C24.44D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 48 | 4 | (C2xC8).92D6 | 192,736 |
(C2xC8).93D6 = C24.27C23 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | 4 | (C2xC8).93D6 | 192,738 |
(C2xC8).94D6 = Q16:Dic3 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 192 | | (C2xC8).94D6 | 192,743 |
(C2xC8).95D6 = C24.36D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).95D6 | 192,748 |
(C2xC8).96D6 = C24.37D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).96D6 | 192,749 |
(C2xC8).97D6 = C24.29D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | 4 | (C2xC8).97D6 | 192,751 |
(C2xC8).98D6 = Q16:D6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 48 | 4+ | (C2xC8).98D6 | 192,752 |
(C2xC8).99D6 = D8.9D6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | 4- | (C2xC8).99D6 | 192,754 |
(C2xC8).100D6 = D8:4Dic3 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 48 | 4 | (C2xC8).100D6 | 192,756 |
(C2xC8).101D6 = C2xC8.D6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).101D6 | 192,1306 |
(C2xC8).102D6 = D4.13D12 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | 4- | (C2xC8).102D6 | 192,1312 |
(C2xC8).103D6 = C2xD4.D6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).103D6 | 192,1319 |
(C2xC8).104D6 = C2xQ16:S3 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).104D6 | 192,1323 |
(C2xC8).105D6 = D12.30D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | 4 | (C2xC8).105D6 | 192,1325 |
(C2xC8).106D6 = D8.10D6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | 4- | (C2xC8).106D6 | 192,1330 |
(C2xC8).107D6 = C23.39D12 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).107D6 | 192,280 |
(C2xC8).108D6 = D12.32D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).108D6 | 192,292 |
(C2xC8).109D6 = C23.43D12 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).109D6 | 192,294 |
(C2xC8).110D6 = C23.18D12 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).110D6 | 192,296 |
(C2xC8).111D6 = Dic6:14D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).111D6 | 192,297 |
(C2xC8).112D6 = D4:Dic6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).112D6 | 192,320 |
(C2xC8).113D6 = Dic6:2D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).113D6 | 192,321 |
(C2xC8).114D6 = D4.Dic6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).114D6 | 192,322 |
(C2xC8).115D6 = D6.SD16 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).115D6 | 192,336 |
(C2xC8).116D6 = D6:C8:11C2 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).116D6 | 192,338 |
(C2xC8).117D6 = D4:3D12 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).117D6 | 192,340 |
(C2xC8).118D6 = D12.D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).118D6 | 192,346 |
(C2xC8).119D6 = Q8:2Dic6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 192 | | (C2xC8).119D6 | 192,350 |
(C2xC8).120D6 = Dic6.11D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).120D6 | 192,357 |
(C2xC8).121D6 = Q8.4Dic6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 192 | | (C2xC8).121D6 | 192,358 |
(C2xC8).122D6 = D6.1SD16 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).122D6 | 192,364 |
(C2xC8).123D6 = Q8:3D12 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).123D6 | 192,365 |
(C2xC8).124D6 = Q8.11D12 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).124D6 | 192,367 |
(C2xC8).125D6 = C8:Dic3:C2 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).125D6 | 192,374 |
(C2xC8).126D6 = Dic3:SD16 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).126D6 | 192,377 |
(C2xC8).127D6 = Dic6.3Q8 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 192 | | (C2xC8).127D6 | 192,388 |
(C2xC8).128D6 = C12:SD16 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).128D6 | 192,400 |
(C2xC8).129D6 = D12:3Q8 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).129D6 | 192,401 |
(C2xC8).130D6 = D12.19D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).130D6 | 192,403 |
(C2xC8).131D6 = C42.36D6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).131D6 | 192,404 |
(C2xC8).132D6 = D12.3Q8 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).132D6 | 192,406 |
(C2xC8).133D6 = Dic6:8D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).133D6 | 192,407 |
(C2xC8).134D6 = Dic6:4Q8 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 192 | | (C2xC8).134D6 | 192,410 |
(C2xC8).135D6 = Dic6:Q8 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 192 | | (C2xC8).135D6 | 192,413 |
(C2xC8).136D6 = Dic6.Q8 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 192 | | (C2xC8).136D6 | 192,416 |
(C2xC8).137D6 = D6.2SD16 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).137D6 | 192,421 |
(C2xC8).138D6 = D6.4SD16 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).138D6 | 192,422 |
(C2xC8).139D6 = C4.Q8:S3 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).139D6 | 192,425 |
(C2xC8).140D6 = C6.(C4oD8) | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).140D6 | 192,427 |
(C2xC8).141D6 = D12:Q8 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).141D6 | 192,429 |
(C2xC8).142D6 = D12.Q8 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).142D6 | 192,430 |
(C2xC8).143D6 = Dic3:3SD16 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).143D6 | 192,721 |
(C2xC8).144D6 = Dic3:5SD16 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).144D6 | 192,722 |
(C2xC8).145D6 = (C3xD4).D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).145D6 | 192,724 |
(C2xC8).146D6 = (C3xQ8).D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).146D6 | 192,725 |
(C2xC8).147D6 = D6:8SD16 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).147D6 | 192,729 |
(C2xC8).148D6 = D12:7D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).148D6 | 192,731 |
(C2xC8).149D6 = Dic6.16D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).149D6 | 192,732 |
(C2xC8).150D6 = C12.15C42 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 48 | 4 | (C2xC8).150D6 | 192,25 |
(C2xC8).151D6 = C48:C4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 48 | 4 | (C2xC8).151D6 | 192,71 |
(C2xC8).152D6 = C8.25D12 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 48 | 4 | (C2xC8).152D6 | 192,73 |
(C2xC8).153D6 = C24.D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 48 | 4 | (C2xC8).153D6 | 192,112 |
(C2xC8).154D6 = C24:Q8 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 192 | | (C2xC8).154D6 | 192,260 |
(C2xC8).155D6 = C42.14D6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 192 | | (C2xC8).155D6 | 192,262 |
(C2xC8).156D6 = C42.182D6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).156D6 | 192,264 |
(C2xC8).157D6 = C8:9D12 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).157D6 | 192,265 |
(C2xC8).158D6 = C42.185D6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).158D6 | 192,268 |
(C2xC8).159D6 = C42.19D6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).159D6 | 192,272 |
(C2xC8).160D6 = C42.20D6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).160D6 | 192,273 |
(C2xC8).161D6 = D24:4C4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 48 | 4 | (C2xC8).161D6 | 192,276 |
(C2xC8).162D6 = Dic3.M4(2) | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).162D6 | 192,278 |
(C2xC8).163D6 = D6:C8:C2 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).163D6 | 192,286 |
(C2xC8).164D6 = C3:C8:26D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).164D6 | 192,289 |
(C2xC8).165D6 = D4.S3:C4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).165D6 | 192,316 |
(C2xC8).166D6 = C4:C4.D6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).166D6 | 192,323 |
(C2xC8).167D6 = C12:Q8:C2 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).167D6 | 192,324 |
(C2xC8).168D6 = D4:(C4xS3) | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).168D6 | 192,330 |
(C2xC8).169D6 = C3:C8:1D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).169D6 | 192,339 |
(C2xC8).170D6 = C3:C8:D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).170D6 | 192,341 |
(C2xC8).171D6 = D4:S3:C4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).171D6 | 192,344 |
(C2xC8).172D6 = C3:Q16:C4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 192 | | (C2xC8).172D6 | 192,348 |
(C2xC8).173D6 = (C2xC8).D6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).173D6 | 192,353 |
(C2xC8).174D6 = (C2xQ8).36D6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 192 | | (C2xC8).174D6 | 192,356 |
(C2xC8).175D6 = (S3xQ8):C4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).175D6 | 192,361 |
(C2xC8).176D6 = Q8:7(C4xS3) | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).176D6 | 192,362 |
(C2xC8).177D6 = C3:(C8:D4) | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).177D6 | 192,371 |
(C2xC8).178D6 = C3:C8.D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).178D6 | 192,375 |
(C2xC8).179D6 = Q8:3(C4xS3) | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).179D6 | 192,376 |
(C2xC8).180D6 = C42.198D6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 192 | | (C2xC8).180D6 | 192,390 |
(C2xC8).181D6 = C42.202D6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).181D6 | 192,394 |
(C2xC8).182D6 = C12:M4(2) | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).182D6 | 192,396 |
(C2xC8).183D6 = C12:2M4(2) | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).183D6 | 192,397 |
(C2xC8).184D6 = C42.30D6 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).184D6 | 192,398 |
(C2xC8).185D6 = Dic3:4M4(2) | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).185D6 | 192,677 |
(C2xC8).186D6 = C12.88(C2xQ8) | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).186D6 | 192,678 |
(C2xC8).187D6 = C23.51D12 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).187D6 | 192,679 |
(C2xC8).188D6 = C24:D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).188D6 | 192,686 |
(C2xC8).189D6 = D6:C8:40C2 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).189D6 | 192,688 |
(C2xC8).190D6 = C23.54D12 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 96 | | (C2xC8).190D6 | 192,692 |
(C2xC8).191D6 = C24.54D4 | φ: D6/C3 → C22 ⊆ Aut C2xC8 | 48 | 4 | (C2xC8).191D6 | 192,704 |
(C2xC8).192D6 = Dic3.5M4(2) | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).192D6 | 192,277 |
(C2xC8).193D6 = C24:C4:C2 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).193D6 | 192,279 |
(C2xC8).194D6 = C3:D4:C8 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).194D6 | 192,284 |
(C2xC8).195D6 = D6:2M4(2) | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).195D6 | 192,287 |
(C2xC8).196D6 = Dic3:M4(2) | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).196D6 | 192,288 |
(C2xC8).197D6 = Dic3:4D8 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).197D6 | 192,315 |
(C2xC8).198D6 = Dic3:6SD16 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).198D6 | 192,317 |
(C2xC8).199D6 = Dic3.SD16 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).199D6 | 192,319 |
(C2xC8).200D6 = (C2xC8).200D6 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).200D6 | 192,327 |
(C2xC8).201D6 = D4:2S3:C4 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).201D6 | 192,331 |
(C2xC8).202D6 = D6:D8 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).202D6 | 192,334 |
(C2xC8).203D6 = D6:SD16 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).203D6 | 192,337 |
(C2xC8).204D6 = Dic3:7SD16 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).204D6 | 192,347 |
(C2xC8).205D6 = Dic3:4Q16 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).205D6 | 192,349 |
(C2xC8).206D6 = Dic3.1Q16 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).206D6 | 192,351 |
(C2xC8).207D6 = Q8:C4:S3 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).207D6 | 192,359 |
(C2xC8).208D6 = S3xQ8:C4 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).208D6 | 192,360 |
(C2xC8).209D6 = C4:C4.150D6 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).209D6 | 192,363 |
(C2xC8).210D6 = D6:2SD16 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).210D6 | 192,366 |
(C2xC8).211D6 = D6:1Q16 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).211D6 | 192,372 |
(C2xC8).212D6 = C42.27D6 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).212D6 | 192,387 |
(C2xC8).213D6 = Dic6:C8 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).213D6 | 192,389 |
(C2xC8).214D6 = S3xC4:C8 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).214D6 | 192,391 |
(C2xC8).215D6 = C42.200D6 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).215D6 | 192,392 |
(C2xC8).216D6 = D12:C8 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).216D6 | 192,393 |
(C2xC8).217D6 = D6:3M4(2) | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).217D6 | 192,395 |
(C2xC8).218D6 = C42.31D6 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).218D6 | 192,399 |
(C2xC8).219D6 = C6.6D16 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).219D6 | 192,48 |
(C2xC8).220D6 = C6.SD32 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).220D6 | 192,49 |
(C2xC8).221D6 = C6.D16 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).221D6 | 192,50 |
(C2xC8).222D6 = C6.Q32 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).222D6 | 192,51 |
(C2xC8).223D6 = D8:1Dic3 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).223D6 | 192,121 |
(C2xC8).224D6 = C6.5Q32 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).224D6 | 192,123 |
(C2xC8).225D6 = Dic3:5D8 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).225D6 | 192,431 |
(C2xC8).226D6 = Dic3:5Q16 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).226D6 | 192,432 |
(C2xC8).227D6 = C24:2Q8 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).227D6 | 192,433 |
(C2xC8).228D6 = C8.6Dic6 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).228D6 | 192,437 |
(C2xC8).229D6 = S3xC2.D8 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).229D6 | 192,438 |
(C2xC8).230D6 = C8.27(C4xS3) | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).230D6 | 192,439 |
(C2xC8).231D6 = D6:2D8 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).231D6 | 192,442 |
(C2xC8).232D6 = D6:2Q16 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).232D6 | 192,446 |
(C2xC8).233D6 = C2xC3:D16 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).233D6 | 192,705 |
(C2xC8).234D6 = C2xD8.S3 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).234D6 | 192,707 |
(C2xC8).235D6 = Dic3xD8 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).235D6 | 192,708 |
(C2xC8).236D6 = C24:5D4 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).236D6 | 192,710 |
(C2xC8).237D6 = C24.22D4 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).237D6 | 192,714 |
(C2xC8).238D6 = D6:3D8 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).238D6 | 192,716 |
(C2xC8).239D6 = C2xC8.6D6 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).239D6 | 192,737 |
(C2xC8).240D6 = C2xC3:Q32 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).240D6 | 192,739 |
(C2xC8).241D6 = Dic3xQ16 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).241D6 | 192,740 |
(C2xC8).242D6 = C24.26D4 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).242D6 | 192,742 |
(C2xC8).243D6 = D6:3Q16 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).243D6 | 192,747 |
(C2xC8).244D6 = C24.28D4 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).244D6 | 192,750 |
(C2xC8).245D6 = C2xD8:3S3 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).245D6 | 192,1315 |
(C2xC8).246D6 = C2xS3xQ16 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).246D6 | 192,1322 |
(C2xC8).247D6 = C2xD24:C2 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).247D6 | 192,1324 |
(C2xC8).248D6 = C24.7Q8 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | 4 | (C2xC8).248D6 | 192,52 |
(C2xC8).249D6 = Dic12.C4 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | 4 | (C2xC8).249D6 | 192,56 |
(C2xC8).250D6 = C24.41D4 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | 4 | (C2xC8).250D6 | 192,126 |
(C2xC8).251D6 = S3xC8.C4 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 48 | 4 | (C2xC8).251D6 | 192,451 |
(C2xC8).252D6 = D24:7C4 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 48 | 4 | (C2xC8).252D6 | 192,454 |
(C2xC8).253D6 = Q16.D6 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | 4 | (C2xC8).253D6 | 192,753 |
(C2xC8).254D6 = D8:5Dic3 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 48 | 4 | (C2xC8).254D6 | 192,755 |
(C2xC8).255D6 = Dic3:8SD16 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).255D6 | 192,411 |
(C2xC8).256D6 = C24:5Q8 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).256D6 | 192,414 |
(C2xC8).257D6 = C8.8Dic6 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).257D6 | 192,417 |
(C2xC8).258D6 = S3xC4.Q8 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).258D6 | 192,418 |
(C2xC8).259D6 = (S3xC8):C4 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).259D6 | 192,419 |
(C2xC8).260D6 = C8:8D12 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).260D6 | 192,423 |
(C2xC8).261D6 = Dic3xSD16 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).261D6 | 192,720 |
(C2xC8).262D6 = C24.43D4 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).262D6 | 192,727 |
(C2xC8).263D6 = C24:14D4 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).263D6 | 192,730 |
(C2xC8).264D6 = C24:15D4 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).264D6 | 192,734 |
(C2xC8).265D6 = C2xQ8.7D6 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).265D6 | 192,1320 |
(C2xC8).266D6 = C24.97D4 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 48 | 4 | (C2xC8).266D6 | 192,70 |
(C2xC8).267D6 = Dic6.C8 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | 4 | (C2xC8).267D6 | 192,74 |
(C2xC8).268D6 = C24.99D4 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | 4 | (C2xC8).268D6 | 192,120 |
(C2xC8).269D6 = S3xC8:C4 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).269D6 | 192,263 |
(C2xC8).270D6 = Dic3:5M4(2) | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).270D6 | 192,266 |
(C2xC8).271D6 = D6.4C42 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).271D6 | 192,267 |
(C2xC8).272D6 = S3xM5(2) | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 48 | 4 | (C2xC8).272D6 | 192,465 |
(C2xC8).273D6 = C16.12D6 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | 4 | (C2xC8).273D6 | 192,466 |
(C2xC8).274D6 = Dic3xM4(2) | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).274D6 | 192,676 |
(C2xC8).275D6 = C12.7C42 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).275D6 | 192,681 |
(C2xC8).276D6 = C24:21D4 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).276D6 | 192,687 |
(C2xC8).277D6 = C24.78C23 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | 4 | (C2xC8).277D6 | 192,699 |
(C2xC8).278D6 = C24.100D4 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 48 | 4 | (C2xC8).278D6 | 192,703 |
(C2xC8).279D6 = C2xD12.C4 | φ: D6/S3 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).279D6 | 192,1303 |
(C2xC8).280D6 = C24:12Q8 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).280D6 | 192,238 |
(C2xC8).281D6 = C12.14Q16 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).281D6 | 192,240 |
(C2xC8).282D6 = C42.282D6 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).282D6 | 192,244 |
(C2xC8).283D6 = C8:6D12 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).283D6 | 192,247 |
(C2xC8).284D6 = C42.243D6 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).284D6 | 192,249 |
(C2xC8).285D6 = C4xC24:C2 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).285D6 | 192,250 |
(C2xC8).286D6 = C4xD24 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).286D6 | 192,251 |
(C2xC8).287D6 = C4.5D24 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).287D6 | 192,253 |
(C2xC8).288D6 = C42.264D6 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).288D6 | 192,256 |
(C2xC8).289D6 = C4xDic12 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).289D6 | 192,257 |
(C2xC8).290D6 = C2xDic3:C8 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).290D6 | 192,658 |
(C2xC8).291D6 = Dic3:C8:C2 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).291D6 | 192,661 |
(C2xC8).292D6 = C2xC2.Dic12 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).292D6 | 192,662 |
(C2xC8).293D6 = (C22xC8):7S3 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).293D6 | 192,669 |
(C2xC8).294D6 = C24:33D4 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).294D6 | 192,670 |
(C2xC8).295D6 = C23.28D12 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).295D6 | 192,672 |
(C2xC8).296D6 = C2.Dic24 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).296D6 | 192,62 |
(C2xC8).297D6 = C48:5C4 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).297D6 | 192,63 |
(C2xC8).298D6 = C48:6C4 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).298D6 | 192,64 |
(C2xC8).299D6 = C2.D48 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).299D6 | 192,68 |
(C2xC8).300D6 = C24:8Q8 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).300D6 | 192,241 |
(C2xC8).301D6 = C12:4D8 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).301D6 | 192,254 |
(C2xC8).302D6 = C12:4Q16 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).302D6 | 192,258 |
(C2xC8).303D6 = C2xD48 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).303D6 | 192,461 |
(C2xC8).304D6 = C2xC48:C2 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).304D6 | 192,462 |
(C2xC8).305D6 = C2xDic24 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).305D6 | 192,464 |
(C2xC8).306D6 = C2xC24:1C4 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).306D6 | 192,664 |
(C2xC8).307D6 = C23.27D12 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).307D6 | 192,665 |
(C2xC8).308D6 = C24:29D4 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).308D6 | 192,674 |
(C2xC8).309D6 = C24.82D4 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).309D6 | 192,675 |
(C2xC8).310D6 = C22xDic12 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).310D6 | 192,1301 |
(C2xC8).311D6 = C48.C4 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | 2 | (C2xC8).311D6 | 192,65 |
(C2xC8).312D6 = D24.1C4 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | 2 | (C2xC8).312D6 | 192,69 |
(C2xC8).313D6 = D48:7C2 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | 2 | (C2xC8).313D6 | 192,463 |
(C2xC8).314D6 = C2xC24.C4 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).314D6 | 192,666 |
(C2xC8).315D6 = C24:9Q8 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).315D6 | 192,239 |
(C2xC8).316D6 = C24.13Q8 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).316D6 | 192,242 |
(C2xC8).317D6 = C8:5D12 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).317D6 | 192,252 |
(C2xC8).318D6 = C8.8D12 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).318D6 | 192,255 |
(C2xC8).319D6 = C2xC8:Dic3 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).319D6 | 192,663 |
(C2xC8).320D6 = C24:30D4 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).320D6 | 192,673 |
(C2xC8).321D6 = C24.1C8 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 48 | 2 | (C2xC8).321D6 | 192,22 |
(C2xC8).322D6 = D12.C8 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | 2 | (C2xC8).322D6 | 192,67 |
(C2xC8).323D6 = C4xC8:S3 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).323D6 | 192,246 |
(C2xC8).324D6 = D24:11C4 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 48 | 2 | (C2xC8).324D6 | 192,259 |
(C2xC8).325D6 = D12.4C8 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | 2 | (C2xC8).325D6 | 192,460 |
(C2xC8).326D6 = C2xC12.C8 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).326D6 | 192,656 |
(C2xC8).327D6 = C2xC24:C4 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 192 | | (C2xC8).327D6 | 192,659 |
(C2xC8).328D6 = C12.12C42 | φ: D6/C6 → C2 ⊆ Aut C2xC8 | 96 | | (C2xC8).328D6 | 192,660 |
(C2xC8).329D6 = C4xC3:C16 | central extension (φ=1) | 192 | | (C2xC8).329D6 | 192,19 |
(C2xC8).330D6 = C24.C8 | central extension (φ=1) | 192 | | (C2xC8).330D6 | 192,20 |
(C2xC8).331D6 = C12:C16 | central extension (φ=1) | 192 | | (C2xC8).331D6 | 192,21 |
(C2xC8).332D6 = Dic3xC16 | central extension (φ=1) | 192 | | (C2xC8).332D6 | 192,59 |
(C2xC8).333D6 = Dic3:C16 | central extension (φ=1) | 192 | | (C2xC8).333D6 | 192,60 |
(C2xC8).334D6 = C48:10C4 | central extension (φ=1) | 192 | | (C2xC8).334D6 | 192,61 |
(C2xC8).335D6 = D6:C16 | central extension (φ=1) | 96 | | (C2xC8).335D6 | 192,66 |
(C2xC8).336D6 = C24.98D4 | central extension (φ=1) | 96 | | (C2xC8).336D6 | 192,108 |
(C2xC8).337D6 = C8xDic6 | central extension (φ=1) | 192 | | (C2xC8).337D6 | 192,237 |
(C2xC8).338D6 = S3xC4xC8 | central extension (φ=1) | 96 | | (C2xC8).338D6 | 192,243 |
(C2xC8).339D6 = C8xD12 | central extension (φ=1) | 96 | | (C2xC8).339D6 | 192,245 |
(C2xC8).340D6 = D6.C42 | central extension (φ=1) | 96 | | (C2xC8).340D6 | 192,248 |
(C2xC8).341D6 = S3xC2xC16 | central extension (φ=1) | 96 | | (C2xC8).341D6 | 192,458 |
(C2xC8).342D6 = C2xD6.C8 | central extension (φ=1) | 96 | | (C2xC8).342D6 | 192,459 |
(C2xC8).343D6 = C22xC3:C16 | central extension (φ=1) | 192 | | (C2xC8).343D6 | 192,655 |
(C2xC8).344D6 = Dic3xC2xC8 | central extension (φ=1) | 192 | | (C2xC8).344D6 | 192,657 |
(C2xC8).345D6 = C8xC3:D4 | central extension (φ=1) | 96 | | (C2xC8).345D6 | 192,668 |