direct product, metabelian, supersoluble, monomial, rational, 2-hyperelementary
Aliases: S3×C4⋊1D4, C42⋊36D6, C4⋊1(S3×D4), (C4×S3)⋊7D4, C12⋊2(C2×D4), (C2×D4)⋊25D6, Dic3⋊1(C2×D4), D6.61(C2×D4), C4⋊D12⋊16C2, C12⋊3D4⋊25C2, (S3×C42)⋊12C2, (C4×C12)⋊25C22, (C6×D4)⋊17C22, C6.92(C22×D4), (C2×D12)⋊30C22, (C2×C6).258C24, (C2×C12).507C23, (C4×Dic3)⋊65C22, C23.74(C22×S3), (C22×C6).72C23, (S3×C23).71C22, C22.279(S3×C23), (C22×S3).259C23, (C2×Dic3).268C23, (C2×S3×D4)⋊18C2, C3⋊2(C2×C4⋊1D4), C2.65(C2×S3×D4), (C3×C4⋊1D4)⋊5C2, (C2×C3⋊D4)⋊25C22, (S3×C2×C4).250C22, (C2×C4).596(C22×S3), SmallGroup(192,1273)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 1584 in 498 conjugacy classes, 131 normal (12 characteristic)
C1, C2 [×3], C2 [×12], C3, C4 [×6], C4 [×6], C22, C22 [×46], S3 [×4], S3 [×4], C6 [×3], C6 [×4], C2×C4 [×3], C2×C4 [×15], D4 [×48], C23 [×4], C23 [×29], Dic3 [×6], C12 [×6], D6 [×6], D6 [×28], C2×C6, C2×C6 [×12], C42, C42 [×3], C22×C4 [×3], C2×D4 [×6], C2×D4 [×42], C24 [×4], C4×S3 [×12], D12 [×12], C2×Dic3 [×3], C3⋊D4 [×24], C2×C12 [×3], C3×D4 [×12], C22×S3, C22×S3 [×4], C22×S3 [×24], C22×C6 [×4], C2×C42, C4⋊1D4, C4⋊1D4 [×7], C22×D4 [×6], C4×Dic3 [×3], C4×C12, S3×C2×C4 [×3], C2×D12 [×6], S3×D4 [×24], C2×C3⋊D4 [×12], C6×D4 [×6], S3×C23 [×4], C2×C4⋊1D4, S3×C42, C4⋊D12, C12⋊3D4 [×6], C3×C4⋊1D4, C2×S3×D4 [×6], S3×C4⋊1D4
Quotients:
C1, C2 [×15], C22 [×35], S3, D4 [×12], C23 [×15], D6 [×7], C2×D4 [×18], C24, C22×S3 [×7], C4⋊1D4 [×4], C22×D4 [×3], S3×D4 [×6], S3×C23, C2×C4⋊1D4, C2×S3×D4 [×3], S3×C4⋊1D4
Generators and relations
G = < a,b,c,d,e | a3=b2=c4=d4=e2=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece=c-1, ede=d-1 >
(1 23 38)(2 24 39)(3 21 40)(4 22 37)(5 29 13)(6 30 14)(7 31 15)(8 32 16)(9 25 44)(10 26 41)(11 27 42)(12 28 43)(17 45 33)(18 46 34)(19 47 35)(20 48 36)
(1 3)(2 4)(5 31)(6 32)(7 29)(8 30)(9 11)(10 12)(13 15)(14 16)(17 47)(18 48)(19 45)(20 46)(21 38)(22 39)(23 40)(24 37)(25 42)(26 43)(27 44)(28 41)(33 35)(34 36)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 13 33 12)(2 14 34 9)(3 15 35 10)(4 16 36 11)(5 17 28 23)(6 18 25 24)(7 19 26 21)(8 20 27 22)(29 45 43 38)(30 46 44 39)(31 47 41 40)(32 48 42 37)
(1 2)(3 4)(5 25)(6 28)(7 27)(8 26)(9 13)(10 16)(11 15)(12 14)(17 18)(19 20)(21 22)(23 24)(29 44)(30 43)(31 42)(32 41)(33 34)(35 36)(37 40)(38 39)(45 46)(47 48)
G:=sub<Sym(48)| (1,23,38)(2,24,39)(3,21,40)(4,22,37)(5,29,13)(6,30,14)(7,31,15)(8,32,16)(9,25,44)(10,26,41)(11,27,42)(12,28,43)(17,45,33)(18,46,34)(19,47,35)(20,48,36), (1,3)(2,4)(5,31)(6,32)(7,29)(8,30)(9,11)(10,12)(13,15)(14,16)(17,47)(18,48)(19,45)(20,46)(21,38)(22,39)(23,40)(24,37)(25,42)(26,43)(27,44)(28,41)(33,35)(34,36), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,13,33,12)(2,14,34,9)(3,15,35,10)(4,16,36,11)(5,17,28,23)(6,18,25,24)(7,19,26,21)(8,20,27,22)(29,45,43,38)(30,46,44,39)(31,47,41,40)(32,48,42,37), (1,2)(3,4)(5,25)(6,28)(7,27)(8,26)(9,13)(10,16)(11,15)(12,14)(17,18)(19,20)(21,22)(23,24)(29,44)(30,43)(31,42)(32,41)(33,34)(35,36)(37,40)(38,39)(45,46)(47,48)>;
G:=Group( (1,23,38)(2,24,39)(3,21,40)(4,22,37)(5,29,13)(6,30,14)(7,31,15)(8,32,16)(9,25,44)(10,26,41)(11,27,42)(12,28,43)(17,45,33)(18,46,34)(19,47,35)(20,48,36), (1,3)(2,4)(5,31)(6,32)(7,29)(8,30)(9,11)(10,12)(13,15)(14,16)(17,47)(18,48)(19,45)(20,46)(21,38)(22,39)(23,40)(24,37)(25,42)(26,43)(27,44)(28,41)(33,35)(34,36), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,13,33,12)(2,14,34,9)(3,15,35,10)(4,16,36,11)(5,17,28,23)(6,18,25,24)(7,19,26,21)(8,20,27,22)(29,45,43,38)(30,46,44,39)(31,47,41,40)(32,48,42,37), (1,2)(3,4)(5,25)(6,28)(7,27)(8,26)(9,13)(10,16)(11,15)(12,14)(17,18)(19,20)(21,22)(23,24)(29,44)(30,43)(31,42)(32,41)(33,34)(35,36)(37,40)(38,39)(45,46)(47,48) );
G=PermutationGroup([(1,23,38),(2,24,39),(3,21,40),(4,22,37),(5,29,13),(6,30,14),(7,31,15),(8,32,16),(9,25,44),(10,26,41),(11,27,42),(12,28,43),(17,45,33),(18,46,34),(19,47,35),(20,48,36)], [(1,3),(2,4),(5,31),(6,32),(7,29),(8,30),(9,11),(10,12),(13,15),(14,16),(17,47),(18,48),(19,45),(20,46),(21,38),(22,39),(23,40),(24,37),(25,42),(26,43),(27,44),(28,41),(33,35),(34,36)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,13,33,12),(2,14,34,9),(3,15,35,10),(4,16,36,11),(5,17,28,23),(6,18,25,24),(7,19,26,21),(8,20,27,22),(29,45,43,38),(30,46,44,39),(31,47,41,40),(32,48,42,37)], [(1,2),(3,4),(5,25),(6,28),(7,27),(8,26),(9,13),(10,16),(11,15),(12,14),(17,18),(19,20),(21,22),(23,24),(29,44),(30,43),(31,42),(32,41),(33,34),(35,36),(37,40),(38,39),(45,46),(47,48)])
Matrix representation ►G ⊆ GL6(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 1 | 12 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 11 | 0 | 0 | 0 | 0 |
1 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 11 | 0 | 0 | 0 | 0 |
1 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 5 | 0 | 0 |
0 | 0 | 10 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
12 | 2 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 3 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,1,0,0,0,0,11,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,1,0,0,0,0,11,12,0,0,0,0,0,0,12,10,0,0,0,0,5,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,0,0,0,0,0,2,1,0,0,0,0,0,0,1,3,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12] >;
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 3 | 4A | ··· | 4F | 4G | ··· | 4L | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 12A | ··· | 12F |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | ··· | 4 | 4 | ··· | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 12 | 12 | 12 | 12 | 2 | 2 | ··· | 2 | 6 | ··· | 6 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 4 | ··· | 4 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D6 | D6 | S3×D4 |
kernel | S3×C4⋊1D4 | S3×C42 | C4⋊D12 | C12⋊3D4 | C3×C4⋊1D4 | C2×S3×D4 | C4⋊1D4 | C4×S3 | C42 | C2×D4 | C4 |
# reps | 1 | 1 | 1 | 6 | 1 | 6 | 1 | 12 | 1 | 6 | 6 |
In GAP, Magma, Sage, TeX
S_3\times C_4\rtimes_1D_4
% in TeX
G:=Group("S3xC4:1D4");
// GroupNames label
G:=SmallGroup(192,1273);
// by ID
G=gap.SmallGroup(192,1273);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,387,570,185,6278]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^2=c^4=d^4=e^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations