extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C4).1(C4×S3) = C23.D12 | φ: C4×S3/S3 → C4 ⊆ Aut C2×C4 | 48 | 8- | (C2xC4).1(C4xS3) | 192,32 |
(C2×C4).2(C4×S3) = C23.2D12 | φ: C4×S3/S3 → C4 ⊆ Aut C2×C4 | 24 | 8+ | (C2xC4).2(C4xS3) | 192,33 |
(C2×C4).3(C4×S3) = (C2×C4).D12 | φ: C4×S3/S3 → C4 ⊆ Aut C2×C4 | 48 | 8+ | (C2xC4).3(C4xS3) | 192,36 |
(C2×C4).4(C4×S3) = (C2×C12).D4 | φ: C4×S3/S3 → C4 ⊆ Aut C2×C4 | 48 | 8- | (C2xC4).4(C4xS3) | 192,37 |
(C2×C4).5(C4×S3) = C23⋊C4⋊5S3 | φ: C4×S3/S3 → C4 ⊆ Aut C2×C4 | 48 | 8- | (C2xC4).5(C4xS3) | 192,299 |
(C2×C4).6(C4×S3) = S3×C4.10D4 | φ: C4×S3/S3 → C4 ⊆ Aut C2×C4 | 48 | 8- | (C2xC4).6(C4xS3) | 192,309 |
(C2×C4).7(C4×S3) = M4(2).21D6 | φ: C4×S3/S3 → C4 ⊆ Aut C2×C4 | 48 | 8+ | (C2xC4).7(C4xS3) | 192,310 |
(C2×C4).8(C4×S3) = C6.C4≀C2 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).8(C4xS3) | 192,10 |
(C2×C4).9(C4×S3) = C4⋊Dic3⋊C4 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).9(C4xS3) | 192,11 |
(C2×C4).10(C4×S3) = C42.D6 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).10(C4xS3) | 192,23 |
(C2×C4).11(C4×S3) = C42.2D6 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).11(C4xS3) | 192,24 |
(C2×C4).12(C4×S3) = C23.35D12 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).12(C4xS3) | 192,26 |
(C2×C4).13(C4×S3) = C22.2D24 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).13(C4xS3) | 192,29 |
(C2×C4).14(C4×S3) = C4.Dic12 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).14(C4xS3) | 192,40 |
(C2×C4).15(C4×S3) = C12.47D8 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).15(C4xS3) | 192,41 |
(C2×C4).16(C4×S3) = C4.D24 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).16(C4xS3) | 192,44 |
(C2×C4).17(C4×S3) = C12.2D8 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).17(C4xS3) | 192,45 |
(C2×C4).18(C4×S3) = C12.(C4⋊C4) | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).18(C4xS3) | 192,89 |
(C2×C4).19(C4×S3) = (C2×C12).Q8 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).19(C4xS3) | 192,92 |
(C2×C4).20(C4×S3) = M4(2)⋊Dic3 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).20(C4xS3) | 192,113 |
(C2×C4).21(C4×S3) = (C2×C24)⋊C4 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).21(C4xS3) | 192,115 |
(C2×C4).22(C4×S3) = (C2×C12)⋊Q8 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).22(C4xS3) | 192,205 |
(C2×C4).23(C4×S3) = C6.(C4×Q8) | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).23(C4xS3) | 192,206 |
(C2×C4).24(C4×S3) = C2.(C4×D12) | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).24(C4xS3) | 192,212 |
(C2×C4).25(C4×S3) = C2.(C4×Dic6) | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).25(C4xS3) | 192,213 |
(C2×C4).26(C4×S3) = Dic3⋊C4⋊C4 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).26(C4xS3) | 192,214 |
(C2×C4).27(C4×S3) = D6⋊C4⋊3C4 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).27(C4xS3) | 192,229 |
(C2×C4).28(C4×S3) = C24⋊Q8 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).28(C4xS3) | 192,260 |
(C2×C4).29(C4×S3) = C8⋊9D12 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).29(C4xS3) | 192,265 |
(C2×C4).30(C4×S3) = C24⋊C4⋊C2 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).30(C4xS3) | 192,279 |
(C2×C4).31(C4×S3) = D6⋊C8⋊C2 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).31(C4xS3) | 192,286 |
(C2×C4).32(C4×S3) = D6⋊2M4(2) | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).32(C4xS3) | 192,287 |
(C2×C4).33(C4×S3) = Dic3⋊M4(2) | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).33(C4xS3) | 192,288 |
(C2×C4).34(C4×S3) = C42.27D6 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).34(C4xS3) | 192,387 |
(C2×C4).35(C4×S3) = D6⋊3M4(2) | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).35(C4xS3) | 192,395 |
(C2×C4).36(C4×S3) = C42.30D6 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).36(C4xS3) | 192,398 |
(C2×C4).37(C4×S3) = C42.31D6 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).37(C4xS3) | 192,399 |
(C2×C4).38(C4×S3) = C4⋊C4.225D6 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).38(C4xS3) | 192,523 |
(C2×C4).39(C4×S3) = C4○D12⋊C4 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).39(C4xS3) | 192,525 |
(C2×C4).40(C4×S3) = Dic3⋊(C4⋊C4) | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).40(C4xS3) | 192,535 |
(C2×C4).41(C4×S3) = C6.67(C4×D4) | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).41(C4xS3) | 192,537 |
(C2×C4).42(C4×S3) = D6⋊C4⋊7C4 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).42(C4xS3) | 192,549 |
(C2×C4).43(C4×S3) = C4⋊C4.232D6 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).43(C4xS3) | 192,554 |
(C2×C4).44(C4×S3) = C4⋊C4⋊36D6 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).44(C4xS3) | 192,560 |
(C2×C4).45(C4×S3) = C4⋊C4.237D6 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).45(C4xS3) | 192,563 |
(C2×C4).46(C4×S3) = C42⋊6D6 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).46(C4xS3) | 192,564 |
(C2×C4).47(C4×S3) = (C2×D12)⋊13C4 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).47(C4xS3) | 192,565 |
(C2×C4).48(C4×S3) = C23.51D12 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).48(C4xS3) | 192,679 |
(C2×C4).49(C4×S3) = C23.8Dic6 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).49(C4xS3) | 192,683 |
(C2×C4).50(C4×S3) = C24⋊D4 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).50(C4xS3) | 192,686 |
(C2×C4).51(C4×S3) = C24⋊21D4 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).51(C4xS3) | 192,687 |
(C2×C4).52(C4×S3) = C2×C12.46D4 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).52(C4xS3) | 192,689 |
(C2×C4).53(C4×S3) = C23.53D12 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 48 | | (C2xC4).53(C4xS3) | 192,690 |
(C2×C4).54(C4×S3) = C23.54D12 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).54(C4xS3) | 192,692 |
(C2×C4).55(C4×S3) = C2×C12.47D4 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).55(C4xS3) | 192,695 |
(C2×C4).56(C4×S3) = M4(2)⋊24D6 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).56(C4xS3) | 192,698 |
(C2×C4).57(C4×S3) = C42.87D6 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).57(C4xS3) | 192,1075 |
(C2×C4).58(C4×S3) = M4(2)⋊26D6 | φ: C4×S3/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).58(C4xS3) | 192,1304 |
(C2×C4).59(C4×S3) = C6.(C4×D4) | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).59(C4xS3) | 192,211 |
(C2×C4).60(C4×S3) = D6⋊C4⋊5C4 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).60(C4xS3) | 192,228 |
(C2×C4).61(C4×S3) = D6.4C42 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).61(C4xS3) | 192,267 |
(C2×C4).62(C4×S3) = C42.185D6 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).62(C4xS3) | 192,268 |
(C2×C4).63(C4×S3) = C3⋊D4⋊C8 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).63(C4xS3) | 192,284 |
(C2×C4).64(C4×S3) = C3⋊C8⋊26D4 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).64(C4xS3) | 192,289 |
(C2×C4).65(C4×S3) = D12⋊2C8 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).65(C4xS3) | 192,42 |
(C2×C4).66(C4×S3) = Dic6⋊2C8 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).66(C4xS3) | 192,43 |
(C2×C4).67(C4×S3) = Dic6.C8 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | 4 | (C2xC4).67(C4xS3) | 192,74 |
(C2×C4).68(C4×S3) = C12.2C42 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).68(C4xS3) | 192,91 |
(C2×C4).69(C4×S3) = C12.3C42 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).69(C4xS3) | 192,114 |
(C2×C4).70(C4×S3) = Dic6⋊C8 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).70(C4xS3) | 192,389 |
(C2×C4).71(C4×S3) = C42.198D6 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).71(C4xS3) | 192,390 |
(C2×C4).72(C4×S3) = D12⋊C8 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).72(C4xS3) | 192,393 |
(C2×C4).73(C4×S3) = C12⋊2M4(2) | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).73(C4xS3) | 192,397 |
(C2×C4).74(C4×S3) = C16.12D6 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | 4 | (C2xC4).74(C4xS3) | 192,466 |
(C2×C4).75(C4×S3) = C2×C6.D8 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).75(C4xS3) | 192,524 |
(C2×C4).76(C4×S3) = C2×C6.SD16 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).76(C4xS3) | 192,528 |
(C2×C4).77(C4×S3) = C12⋊(C4⋊C4) | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).77(C4xS3) | 192,531 |
(C2×C4).78(C4×S3) = C4.(D6⋊C4) | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).78(C4xS3) | 192,532 |
(C2×C4).79(C4×S3) = (C2×D12)⋊10C4 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).79(C4xS3) | 192,547 |
(C2×C4).80(C4×S3) = C12.5C42 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).80(C4xS3) | 192,556 |
(C2×C4).81(C4×S3) = C4.(C2×D12) | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).81(C4xS3) | 192,561 |
(C2×C4).82(C4×S3) = C12.88(C2×Q8) | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).82(C4xS3) | 192,678 |
(C2×C4).83(C4×S3) = C12.7C42 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).83(C4xS3) | 192,681 |
(C2×C4).84(C4×S3) = D6⋊C8⋊40C2 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).84(C4xS3) | 192,688 |
(C2×C4).85(C4×S3) = C2×D12⋊C4 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).85(C4xS3) | 192,697 |
(C2×C4).86(C4×S3) = C2×Dic6⋊C4 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).86(C4xS3) | 192,1055 |
(C2×C4).87(C4×S3) = C2×D12.C4 | φ: C4×S3/Dic3 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).87(C4xS3) | 192,1303 |
(C2×C4).88(C4×S3) = D6.C42 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).88(C4xS3) | 192,248 |
(C2×C4).89(C4×S3) = C42.243D6 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).89(C4xS3) | 192,249 |
(C2×C4).90(C4×S3) = C4×Dic3⋊C4 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).90(C4xS3) | 192,490 |
(C2×C4).91(C4×S3) = (C2×C42).6S3 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).91(C4xS3) | 192,492 |
(C2×C4).92(C4×S3) = (C2×C42)⋊3S3 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).92(C4xS3) | 192,499 |
(C2×C4).93(C4×S3) = C8×C3⋊D4 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).93(C4xS3) | 192,668 |
(C2×C4).94(C4×S3) = C24⋊33D4 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).94(C4xS3) | 192,670 |
(C2×C4).95(C4×S3) = C4.8Dic12 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).95(C4xS3) | 192,15 |
(C2×C4).96(C4×S3) = C4.17D24 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).96(C4xS3) | 192,18 |
(C2×C4).97(C4×S3) = D12.C8 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 96 | 2 | (C2xC4).97(C4xS3) | 192,67 |
(C2×C4).98(C4×S3) = C12.8C42 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).98(C4xS3) | 192,82 |
(C2×C4).99(C4×S3) = C12.9C42 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).99(C4xS3) | 192,110 |
(C2×C4).100(C4×S3) = C12.10C42 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).100(C4xS3) | 192,111 |
(C2×C4).101(C4×S3) = C8×Dic6 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).101(C4xS3) | 192,237 |
(C2×C4).102(C4×S3) = C24⋊12Q8 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).102(C4xS3) | 192,238 |
(C2×C4).103(C4×S3) = C8×D12 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).103(C4xS3) | 192,245 |
(C2×C4).104(C4×S3) = C8⋊6D12 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).104(C4xS3) | 192,247 |
(C2×C4).105(C4×S3) = D12.4C8 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 96 | 2 | (C2xC4).105(C4xS3) | 192,460 |
(C2×C4).106(C4×S3) = C4×C4.Dic3 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).106(C4xS3) | 192,481 |
(C2×C4).107(C4×S3) = C2×C42⋊4S3 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).107(C4xS3) | 192,486 |
(C2×C4).108(C4×S3) = C12⋊4(C4⋊C4) | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).108(C4xS3) | 192,487 |
(C2×C4).109(C4×S3) = (C2×Dic6)⋊7C4 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).109(C4xS3) | 192,488 |
(C2×C4).110(C4×S3) = C4×C4⋊Dic3 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).110(C4xS3) | 192,493 |
(C2×C4).111(C4×S3) = (C2×C4)⋊6D12 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).111(C4xS3) | 192,498 |
(C2×C4).112(C4×S3) = C12.12C42 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).112(C4xS3) | 192,660 |
(C2×C4).113(C4×S3) = Dic3⋊C8⋊C2 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).113(C4xS3) | 192,661 |
(C2×C4).114(C4×S3) = C2×C2.Dic12 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).114(C4xS3) | 192,662 |
(C2×C4).115(C4×S3) = (C22×C8)⋊7S3 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).115(C4xS3) | 192,669 |
(C2×C4).116(C4×S3) = C2×C2.D24 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).116(C4xS3) | 192,671 |
(C2×C4).117(C4×S3) = C23.28D12 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).117(C4xS3) | 192,672 |
(C2×C4).118(C4×S3) = C2×C4×Dic6 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).118(C4xS3) | 192,1026 |
(C2×C4).119(C4×S3) = C2×C8○D12 | φ: C4×S3/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).119(C4xS3) | 192,1297 |
(C2×C4).120(C4×S3) = Dic3.5C42 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).120(C4xS3) | 192,207 |
(C2×C4).121(C4×S3) = Dic3⋊C42 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).121(C4xS3) | 192,208 |
(C2×C4).122(C4×S3) = C3⋊(C42⋊8C4) | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).122(C4xS3) | 192,209 |
(C2×C4).123(C4×S3) = C3⋊(C42⋊5C4) | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).123(C4xS3) | 192,210 |
(C2×C4).124(C4×S3) = C22.58(S3×D4) | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).124(C4xS3) | 192,223 |
(C2×C4).125(C4×S3) = D6⋊(C4⋊C4) | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).125(C4xS3) | 192,226 |
(C2×C4).126(C4×S3) = S3×C8⋊C4 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).126(C4xS3) | 192,263 |
(C2×C4).127(C4×S3) = C42.182D6 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).127(C4xS3) | 192,264 |
(C2×C4).128(C4×S3) = Dic3⋊5M4(2) | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).128(C4xS3) | 192,266 |
(C2×C4).129(C4×S3) = Dic3.5M4(2) | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).129(C4xS3) | 192,277 |
(C2×C4).130(C4×S3) = Dic3.M4(2) | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).130(C4xS3) | 192,278 |
(C2×C4).131(C4×S3) = S3×C22⋊C8 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).131(C4xS3) | 192,283 |
(C2×C4).132(C4×S3) = D6⋊M4(2) | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).132(C4xS3) | 192,285 |
(C2×C4).133(C4×S3) = C12.53D8 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).133(C4xS3) | 192,38 |
(C2×C4).134(C4×S3) = C12.39SD16 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).134(C4xS3) | 192,39 |
(C2×C4).135(C4×S3) = C24.97D4 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).135(C4xS3) | 192,70 |
(C2×C4).136(C4×S3) = C48⋊C4 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).136(C4xS3) | 192,71 |
(C2×C4).137(C4×S3) = C8.25D12 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).137(C4xS3) | 192,73 |
(C2×C4).138(C4×S3) = C12.C42 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).138(C4xS3) | 192,88 |
(C2×C4).139(C4×S3) = C42⋊3Dic3 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).139(C4xS3) | 192,90 |
(C2×C4).140(C4×S3) = C12.20C42 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).140(C4xS3) | 192,116 |
(C2×C4).141(C4×S3) = C12.4C42 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).141(C4xS3) | 192,117 |
(C2×C4).142(C4×S3) = M4(2)⋊4Dic3 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).142(C4xS3) | 192,118 |
(C2×C4).143(C4×S3) = C12.21C42 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).143(C4xS3) | 192,119 |
(C2×C4).144(C4×S3) = S3×C4⋊C8 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).144(C4xS3) | 192,391 |
(C2×C4).145(C4×S3) = C42.200D6 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).145(C4xS3) | 192,392 |
(C2×C4).146(C4×S3) = C42.202D6 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).146(C4xS3) | 192,394 |
(C2×C4).147(C4×S3) = C12⋊M4(2) | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).147(C4xS3) | 192,396 |
(C2×C4).148(C4×S3) = S3×M5(2) | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).148(C4xS3) | 192,465 |
(C2×C4).149(C4×S3) = C2×C6.Q16 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).149(C4xS3) | 192,521 |
(C2×C4).150(C4×S3) = C2×C12.Q8 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).150(C4xS3) | 192,522 |
(C2×C4).151(C4×S3) = Dic3×C4⋊C4 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).151(C4xS3) | 192,533 |
(C2×C4).152(C4×S3) = (C4×Dic3)⋊8C4 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).152(C4xS3) | 192,534 |
(C2×C4).153(C4×S3) = (C4×Dic3)⋊9C4 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).153(C4xS3) | 192,536 |
(C2×C4).154(C4×S3) = C4⋊(D6⋊C4) | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).154(C4xS3) | 192,546 |
(C2×C4).155(C4×S3) = C4⋊C4.234D6 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).155(C4xS3) | 192,557 |
(C2×C4).156(C4×S3) = Dic3×M4(2) | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).156(C4xS3) | 192,676 |
(C2×C4).157(C4×S3) = Dic3⋊4M4(2) | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).157(C4xS3) | 192,677 |
(C2×C4).158(C4×S3) = C2×C12.53D4 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).158(C4xS3) | 192,682 |
(C2×C4).159(C4×S3) = D6⋊6M4(2) | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).159(C4xS3) | 192,685 |
(C2×C4).160(C4×S3) = M4(2).31D6 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).160(C4xS3) | 192,691 |
(C2×C4).161(C4×S3) = C2×C4⋊C4⋊7S3 | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).161(C4xS3) | 192,1061 |
(C2×C4).162(C4×S3) = C2×S3×M4(2) | φ: C4×S3/D6 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).162(C4xS3) | 192,1302 |
(C2×C4).163(C4×S3) = C8×C3⋊C8 | central extension (φ=1) | 192 | | (C2xC4).163(C4xS3) | 192,12 |
(C2×C4).164(C4×S3) = C42.279D6 | central extension (φ=1) | 192 | | (C2xC4).164(C4xS3) | 192,13 |
(C2×C4).165(C4×S3) = C24⋊C8 | central extension (φ=1) | 192 | | (C2xC4).165(C4xS3) | 192,14 |
(C2×C4).166(C4×S3) = Dic3×C16 | central extension (φ=1) | 192 | | (C2xC4).166(C4xS3) | 192,59 |
(C2×C4).167(C4×S3) = Dic3⋊C16 | central extension (φ=1) | 192 | | (C2xC4).167(C4xS3) | 192,60 |
(C2×C4).168(C4×S3) = C48⋊10C4 | central extension (φ=1) | 192 | | (C2xC4).168(C4xS3) | 192,61 |
(C2×C4).169(C4×S3) = D6⋊C16 | central extension (φ=1) | 96 | | (C2xC4).169(C4xS3) | 192,66 |
(C2×C4).170(C4×S3) = (C2×C12)⋊3C8 | central extension (φ=1) | 192 | | (C2xC4).170(C4xS3) | 192,83 |
(C2×C4).171(C4×S3) = (C2×C24)⋊5C4 | central extension (φ=1) | 192 | | (C2xC4).171(C4xS3) | 192,109 |
(C2×C4).172(C4×S3) = S3×C4×C8 | central extension (φ=1) | 96 | | (C2xC4).172(C4xS3) | 192,243 |
(C2×C4).173(C4×S3) = C42.282D6 | central extension (φ=1) | 96 | | (C2xC4).173(C4xS3) | 192,244 |
(C2×C4).174(C4×S3) = C4×C8⋊S3 | central extension (φ=1) | 96 | | (C2xC4).174(C4xS3) | 192,246 |
(C2×C4).175(C4×S3) = S3×C2×C16 | central extension (φ=1) | 96 | | (C2xC4).175(C4xS3) | 192,458 |
(C2×C4).176(C4×S3) = C2×D6.C8 | central extension (φ=1) | 96 | | (C2xC4).176(C4xS3) | 192,459 |
(C2×C4).177(C4×S3) = C2×C4×C3⋊C8 | central extension (φ=1) | 192 | | (C2xC4).177(C4xS3) | 192,479 |
(C2×C4).178(C4×S3) = C2×C42.S3 | central extension (φ=1) | 192 | | (C2xC4).178(C4xS3) | 192,480 |
(C2×C4).179(C4×S3) = Dic3×C42 | central extension (φ=1) | 192 | | (C2xC4).179(C4xS3) | 192,489 |
(C2×C4).180(C4×S3) = C42⋊6Dic3 | central extension (φ=1) | 192 | | (C2xC4).180(C4xS3) | 192,491 |
(C2×C4).181(C4×S3) = Dic3×C2×C8 | central extension (φ=1) | 192 | | (C2xC4).181(C4xS3) | 192,657 |
(C2×C4).182(C4×S3) = C2×Dic3⋊C8 | central extension (φ=1) | 192 | | (C2xC4).182(C4xS3) | 192,658 |
(C2×C4).183(C4×S3) = C2×C24⋊C4 | central extension (φ=1) | 192 | | (C2xC4).183(C4xS3) | 192,659 |
(C2×C4).184(C4×S3) = C2×D6⋊C8 | central extension (φ=1) | 96 | | (C2xC4).184(C4xS3) | 192,667 |
(C2×C4).185(C4×S3) = C2×C42⋊2S3 | central extension (φ=1) | 96 | | (C2xC4).185(C4xS3) | 192,1031 |
(C2×C4).186(C4×S3) = S3×C22×C8 | central extension (φ=1) | 96 | | (C2xC4).186(C4xS3) | 192,1295 |
(C2×C4).187(C4×S3) = C22×C8⋊S3 | central extension (φ=1) | 96 | | (C2xC4).187(C4xS3) | 192,1296 |