Copied to
clipboard

G = D4.11D28order 448 = 26·7

1st non-split extension by D4 of D28 acting through Inn(D4)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.11D28, Q8.11D28, D5611C22, C28.61C24, C56.10C23, M4(2)⋊20D14, D28.24C23, Dic2810C22, Dic14.24C23, C8○D43D7, (C2×C8)⋊6D14, (C2×C56)⋊9C22, (C7×D4).23D4, C28.73(C2×D4), C71(D4○SD16), C4.27(C2×D28), (C7×Q8).23D4, D48D143C2, C8⋊D1411C2, C4○D4.38D14, C4○D281C22, D567C211C2, C8.55(C22×D7), C4.58(C23×D7), C22.3(C2×D28), C8.D1411C2, C56⋊C211C22, C2.30(C22×D28), C14.28(C22×D4), D4.10D143C2, (C2×C28).515C23, (C2×Dic14)⋊35C22, (C2×D28).175C22, (C7×M4(2))⋊22C22, (C7×C8○D4)⋊3C2, (C2×C56⋊C2)⋊6C2, (C2×C14).8(C2×D4), (C7×C4○D4).45C22, (C2×C4).226(C22×D7), SmallGroup(448,1204)

Series: Derived Chief Lower central Upper central

C1C28 — D4.11D28
C1C7C14C28D28C2×D28D48D14 — D4.11D28
C7C14C28 — D4.11D28
C1C2C4○D4C8○D4

Generators and relations for D4.11D28
 G = < a,b,c,d | a4=b2=1, c28=d2=a2, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c27 >

Subgroups: 1436 in 258 conjugacy classes, 107 normal (20 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, D7, C14, C14, C2×C8, M4(2), D8, SD16, Q16, C2×D4, C2×Q8, C4○D4, C4○D4, Dic7, C28, C28, D14, C2×C14, C8○D4, C2×SD16, C4○D8, C8⋊C22, C8.C22, 2+ 1+4, 2- 1+4, C56, C56, Dic14, Dic14, Dic14, C4×D7, D28, D28, D28, C2×Dic7, C7⋊D4, C2×C28, C7×D4, C7×Q8, C22×D7, D4○SD16, C56⋊C2, C56⋊C2, D56, Dic28, C2×C56, C7×M4(2), C2×Dic14, C2×D28, C4○D28, D4×D7, D42D7, Q8×D7, Q82D7, C7×C4○D4, C2×C56⋊C2, D567C2, C8⋊D14, C8.D14, C7×C8○D4, D48D14, D4.10D14, D4.11D28
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C24, D14, C22×D4, D28, C22×D7, D4○SD16, C2×D28, C23×D7, C22×D28, D4.11D28

Smallest permutation representation of D4.11D28
On 112 points
Generators in S112
(1 92 29 64)(2 93 30 65)(3 94 31 66)(4 95 32 67)(5 96 33 68)(6 97 34 69)(7 98 35 70)(8 99 36 71)(9 100 37 72)(10 101 38 73)(11 102 39 74)(12 103 40 75)(13 104 41 76)(14 105 42 77)(15 106 43 78)(16 107 44 79)(17 108 45 80)(18 109 46 81)(19 110 47 82)(20 111 48 83)(21 112 49 84)(22 57 50 85)(23 58 51 86)(24 59 52 87)(25 60 53 88)(26 61 54 89)(27 62 55 90)(28 63 56 91)
(57 85)(58 86)(59 87)(60 88)(61 89)(62 90)(63 91)(64 92)(65 93)(66 94)(67 95)(68 96)(69 97)(70 98)(71 99)(72 100)(73 101)(74 102)(75 103)(76 104)(77 105)(78 106)(79 107)(80 108)(81 109)(82 110)(83 111)(84 112)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 28 29 56)(2 55 30 27)(3 26 31 54)(4 53 32 25)(5 24 33 52)(6 51 34 23)(7 22 35 50)(8 49 36 21)(9 20 37 48)(10 47 38 19)(11 18 39 46)(12 45 40 17)(13 16 41 44)(14 43 42 15)(57 70 85 98)(58 97 86 69)(59 68 87 96)(60 95 88 67)(61 66 89 94)(62 93 90 65)(63 64 91 92)(71 112 99 84)(72 83 100 111)(73 110 101 82)(74 81 102 109)(75 108 103 80)(76 79 104 107)(77 106 105 78)

G:=sub<Sym(112)| (1,92,29,64)(2,93,30,65)(3,94,31,66)(4,95,32,67)(5,96,33,68)(6,97,34,69)(7,98,35,70)(8,99,36,71)(9,100,37,72)(10,101,38,73)(11,102,39,74)(12,103,40,75)(13,104,41,76)(14,105,42,77)(15,106,43,78)(16,107,44,79)(17,108,45,80)(18,109,46,81)(19,110,47,82)(20,111,48,83)(21,112,49,84)(22,57,50,85)(23,58,51,86)(24,59,52,87)(25,60,53,88)(26,61,54,89)(27,62,55,90)(28,63,56,91), (57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,28,29,56)(2,55,30,27)(3,26,31,54)(4,53,32,25)(5,24,33,52)(6,51,34,23)(7,22,35,50)(8,49,36,21)(9,20,37,48)(10,47,38,19)(11,18,39,46)(12,45,40,17)(13,16,41,44)(14,43,42,15)(57,70,85,98)(58,97,86,69)(59,68,87,96)(60,95,88,67)(61,66,89,94)(62,93,90,65)(63,64,91,92)(71,112,99,84)(72,83,100,111)(73,110,101,82)(74,81,102,109)(75,108,103,80)(76,79,104,107)(77,106,105,78)>;

G:=Group( (1,92,29,64)(2,93,30,65)(3,94,31,66)(4,95,32,67)(5,96,33,68)(6,97,34,69)(7,98,35,70)(8,99,36,71)(9,100,37,72)(10,101,38,73)(11,102,39,74)(12,103,40,75)(13,104,41,76)(14,105,42,77)(15,106,43,78)(16,107,44,79)(17,108,45,80)(18,109,46,81)(19,110,47,82)(20,111,48,83)(21,112,49,84)(22,57,50,85)(23,58,51,86)(24,59,52,87)(25,60,53,88)(26,61,54,89)(27,62,55,90)(28,63,56,91), (57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,28,29,56)(2,55,30,27)(3,26,31,54)(4,53,32,25)(5,24,33,52)(6,51,34,23)(7,22,35,50)(8,49,36,21)(9,20,37,48)(10,47,38,19)(11,18,39,46)(12,45,40,17)(13,16,41,44)(14,43,42,15)(57,70,85,98)(58,97,86,69)(59,68,87,96)(60,95,88,67)(61,66,89,94)(62,93,90,65)(63,64,91,92)(71,112,99,84)(72,83,100,111)(73,110,101,82)(74,81,102,109)(75,108,103,80)(76,79,104,107)(77,106,105,78) );

G=PermutationGroup([[(1,92,29,64),(2,93,30,65),(3,94,31,66),(4,95,32,67),(5,96,33,68),(6,97,34,69),(7,98,35,70),(8,99,36,71),(9,100,37,72),(10,101,38,73),(11,102,39,74),(12,103,40,75),(13,104,41,76),(14,105,42,77),(15,106,43,78),(16,107,44,79),(17,108,45,80),(18,109,46,81),(19,110,47,82),(20,111,48,83),(21,112,49,84),(22,57,50,85),(23,58,51,86),(24,59,52,87),(25,60,53,88),(26,61,54,89),(27,62,55,90),(28,63,56,91)], [(57,85),(58,86),(59,87),(60,88),(61,89),(62,90),(63,91),(64,92),(65,93),(66,94),(67,95),(68,96),(69,97),(70,98),(71,99),(72,100),(73,101),(74,102),(75,103),(76,104),(77,105),(78,106),(79,107),(80,108),(81,109),(82,110),(83,111),(84,112)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,28,29,56),(2,55,30,27),(3,26,31,54),(4,53,32,25),(5,24,33,52),(6,51,34,23),(7,22,35,50),(8,49,36,21),(9,20,37,48),(10,47,38,19),(11,18,39,46),(12,45,40,17),(13,16,41,44),(14,43,42,15),(57,70,85,98),(58,97,86,69),(59,68,87,96),(60,95,88,67),(61,66,89,94),(62,93,90,65),(63,64,91,92),(71,112,99,84),(72,83,100,111),(73,110,101,82),(74,81,102,109),(75,108,103,80),(76,79,104,107),(77,106,105,78)]])

82 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H7A7B7C8A8B8C8D8E14A14B14C14D···14L28A···28F28G···28O56A···56L56M···56AD
order122222222444444447778888814141414···1428···2828···2856···5656···56
size1122228282828222228282828222224442224···42···24···42···24···4

82 irreducible representations

dim111111112222222244
type++++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D7D14D14D14D28D28D4○SD16D4.11D28
kernelD4.11D28C2×C56⋊C2D567C2C8⋊D14C8.D14C7×C8○D4D48D14D4.10D14C7×D4C7×Q8C8○D4C2×C8M4(2)C4○D4D4Q8C7C1
# reps13333111313993186212

Matrix representation of D4.11D28 in GL4(𝔽113) generated by

112020
011202
112010
011201
,
1000
0100
101120
010112
,
74700
6610400
00747
0066104
,
74700
3510600
00747
0035106
G:=sub<GL(4,GF(113))| [112,0,112,0,0,112,0,112,2,0,1,0,0,2,0,1],[1,0,1,0,0,1,0,1,0,0,112,0,0,0,0,112],[7,66,0,0,47,104,0,0,0,0,7,66,0,0,47,104],[7,35,0,0,47,106,0,0,0,0,7,35,0,0,47,106] >;

D4.11D28 in GAP, Magma, Sage, TeX

D_4._{11}D_{28}
% in TeX

G:=Group("D4.11D28");
// GroupNames label

G:=SmallGroup(448,1204);
// by ID

G=gap.SmallGroup(448,1204);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,387,675,80,1684,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=1,c^28=d^2=a^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^27>;
// generators/relations

׿
×
𝔽