# Extensions 1→N→G→Q→1 with N=S3×C12 and Q=C22

Direct product G=N×Q with N=S3×C12 and Q=C22
dρLabelID
S3×C22×C1296S3xC2^2xC12288,989

Semidirect products G=N:Q with N=S3×C12 and Q=C22
extensionφ:Q→Out NdρLabelID
(S3×C12)⋊1C22 = D1223D6φ: C22/C1C22 ⊆ Out S3×C12244(S3xC12):1C2^2288,954
(S3×C12)⋊2C22 = D1224D6φ: C22/C1C22 ⊆ Out S3×C12484(S3xC12):2C2^2288,955
(S3×C12)⋊3C22 = D1227D6φ: C22/C1C22 ⊆ Out S3×C12244+(S3xC12):3C2^2288,956
(S3×C12)⋊4C22 = S32×D4φ: C22/C1C22 ⊆ Out S3×C12248+(S3xC12):4C2^2288,958
(S3×C12)⋊5C22 = S3×D42S3φ: C22/C1C22 ⊆ Out S3×C12488-(S3xC12):5C2^2288,959
(S3×C12)⋊6C22 = Dic612D6φ: C22/C1C22 ⊆ Out S3×C12248+(S3xC12):6C2^2288,960
(S3×C12)⋊7C22 = D1212D6φ: C22/C1C22 ⊆ Out S3×C12488-(S3xC12):7C2^2288,961
(S3×C12)⋊8C22 = D1213D6φ: C22/C1C22 ⊆ Out S3×C12248+(S3xC12):8C2^2288,962
(S3×C12)⋊9C22 = S3×Q83S3φ: C22/C1C22 ⊆ Out S3×C12488+(S3xC12):9C2^2288,966
(S3×C12)⋊10C22 = D1215D6φ: C22/C1C22 ⊆ Out S3×C12488-(S3xC12):10C2^2288,967
(S3×C12)⋊11C22 = D1216D6φ: C22/C1C22 ⊆ Out S3×C12488+(S3xC12):11C2^2288,968
(S3×C12)⋊12C22 = C3×D46D6φ: C22/C1C22 ⊆ Out S3×C12244(S3xC12):12C2^2288,994
(S3×C12)⋊13C22 = C3×D4○D12φ: C22/C1C22 ⊆ Out S3×C12484(S3xC12):13C2^2288,999
(S3×C12)⋊14C22 = C2×D6.D6φ: C22/C2C2 ⊆ Out S3×C1248(S3xC12):14C2^2288,948
(S3×C12)⋊15C22 = S3×C4○D12φ: C22/C2C2 ⊆ Out S3×C12484(S3xC12):15C2^2288,953
(S3×C12)⋊16C22 = C2×D125S3φ: C22/C2C2 ⊆ Out S3×C1296(S3xC12):16C2^2288,943
(S3×C12)⋊17C22 = C2×D6.6D6φ: C22/C2C2 ⊆ Out S3×C1248(S3xC12):17C2^2288,949
(S3×C12)⋊18C22 = C2×S3×D12φ: C22/C2C2 ⊆ Out S3×C1248(S3xC12):18C2^2288,951
(S3×C12)⋊19C22 = S3×C6×D4φ: C22/C2C2 ⊆ Out S3×C1248(S3xC12):19C2^2288,992
(S3×C12)⋊20C22 = C6×D42S3φ: C22/C2C2 ⊆ Out S3×C1248(S3xC12):20C2^2288,993
(S3×C12)⋊21C22 = C6×Q83S3φ: C22/C2C2 ⊆ Out S3×C1296(S3xC12):21C2^2288,996
(S3×C12)⋊22C22 = S32×C2×C4φ: C22/C2C2 ⊆ Out S3×C1248(S3xC12):22C2^2288,950
(S3×C12)⋊23C22 = C6×C4○D12φ: C22/C2C2 ⊆ Out S3×C1248(S3xC12):23C2^2288,991
(S3×C12)⋊24C22 = C3×S3×C4○D4φ: C22/C2C2 ⊆ Out S3×C12484(S3xC12):24C2^2288,998

Non-split extensions G=N.Q with N=S3×C12 and Q=C22
extensionφ:Q→Out NdρLabelID
(S3×C12).1C22 = S3×C8⋊S3φ: C22/C1C22 ⊆ Out S3×C12484(S3xC12).1C2^2288,438
(S3×C12).2C22 = C24⋊D6φ: C22/C1C22 ⊆ Out S3×C12484(S3xC12).2C2^2288,439
(S3×C12).3C22 = C241D6φ: C22/C1C22 ⊆ Out S3×C12484+(S3xC12).3C2^2288,442
(S3×C12).4C22 = D24⋊S3φ: C22/C1C22 ⊆ Out S3×C12484(S3xC12).4C2^2288,443
(S3×C12).5C22 = C24.3D6φ: C22/C1C22 ⊆ Out S3×C12964-(S3xC12).5C2^2288,448
(S3×C12).6C22 = Dic12⋊S3φ: C22/C1C22 ⊆ Out S3×C12484(S3xC12).6C2^2288,449
(S3×C12).7C22 = C24.D6φ: C22/C1C22 ⊆ Out S3×C12484(S3xC12).7C2^2288,453
(S3×C12).8C22 = D12.2Dic3φ: C22/C1C22 ⊆ Out S3×C12484(S3xC12).8C2^2288,462
(S3×C12).9C22 = D12.Dic3φ: C22/C1C22 ⊆ Out S3×C12484(S3xC12).9C2^2288,463
(S3×C12).10C22 = S3×D4⋊S3φ: C22/C1C22 ⊆ Out S3×C12488+(S3xC12).10C2^2288,572
(S3×C12).11C22 = Dic63D6φ: C22/C1C22 ⊆ Out S3×C12488+(S3xC12).11C2^2288,573
(S3×C12).12C22 = S3×D4.S3φ: C22/C1C22 ⊆ Out S3×C12488-(S3xC12).12C2^2288,576
(S3×C12).13C22 = Dic6.19D6φ: C22/C1C22 ⊆ Out S3×C12488-(S3xC12).13C2^2288,577
(S3×C12).14C22 = D129D6φ: C22/C1C22 ⊆ Out S3×C12488-(S3xC12).14C2^2288,580
(S3×C12).15C22 = D12.22D6φ: C22/C1C22 ⊆ Out S3×C12488-(S3xC12).15C2^2288,581
(S3×C12).16C22 = D12.7D6φ: C22/C1C22 ⊆ Out S3×C12488+(S3xC12).16C2^2288,582
(S3×C12).17C22 = Dic6.20D6φ: C22/C1C22 ⊆ Out S3×C12488+(S3xC12).17C2^2288,583
(S3×C12).18C22 = S3×Q82S3φ: C22/C1C22 ⊆ Out S3×C12488+(S3xC12).18C2^2288,586
(S3×C12).19C22 = D126D6φ: C22/C1C22 ⊆ Out S3×C12488+(S3xC12).19C2^2288,587
(S3×C12).20C22 = S3×C3⋊Q16φ: C22/C1C22 ⊆ Out S3×C12968-(S3xC12).20C2^2288,590
(S3×C12).21C22 = D12.11D6φ: C22/C1C22 ⊆ Out S3×C12968-(S3xC12).21C2^2288,591
(S3×C12).22C22 = D12.24D6φ: C22/C1C22 ⊆ Out S3×C12968-(S3xC12).22C2^2288,594
(S3×C12).23C22 = D12.12D6φ: C22/C1C22 ⊆ Out S3×C12968-(S3xC12).23C2^2288,595
(S3×C12).24C22 = Dic6.22D6φ: C22/C1C22 ⊆ Out S3×C12488+(S3xC12).24C2^2288,596
(S3×C12).25C22 = D12.13D6φ: C22/C1C22 ⊆ Out S3×C12488+(S3xC12).25C2^2288,597
(S3×C12).26C22 = C3×D8⋊S3φ: C22/C1C22 ⊆ Out S3×C12484(S3xC12).26C2^2288,682
(S3×C12).27C22 = C3×Q83D6φ: C22/C1C22 ⊆ Out S3×C12484(S3xC12).27C2^2288,685
(S3×C12).28C22 = C3×D4.D6φ: C22/C1C22 ⊆ Out S3×C12484(S3xC12).28C2^2288,686
(S3×C12).29C22 = C3×Q16⋊S3φ: C22/C1C22 ⊆ Out S3×C12964(S3xC12).29C2^2288,689
(S3×C12).30C22 = D12.33D6φ: C22/C1C22 ⊆ Out S3×C12484(S3xC12).30C2^2288,945
(S3×C12).31C22 = D12.34D6φ: C22/C1C22 ⊆ Out S3×C12484-(S3xC12).31C2^2288,946
(S3×C12).32C22 = Dic6.24D6φ: C22/C1C22 ⊆ Out S3×C12488-(S3xC12).32C2^2288,957
(S3×C12).33C22 = D12.25D6φ: C22/C1C22 ⊆ Out S3×C12488-(S3xC12).33C2^2288,963
(S3×C12).34C22 = Dic6.26D6φ: C22/C1C22 ⊆ Out S3×C12488+(S3xC12).34C2^2288,964
(S3×C12).35C22 = S32×Q8φ: C22/C1C22 ⊆ Out S3×C12488-(S3xC12).35C2^2288,965
(S3×C12).36C22 = C3×Q8.15D6φ: C22/C1C22 ⊆ Out S3×C12484(S3xC12).36C2^2288,997
(S3×C12).37C22 = C3×Q8○D12φ: C22/C1C22 ⊆ Out S3×C12484(S3xC12).37C2^2288,1000
(S3×C12).38C22 = C24.63D6φ: C22/C2C2 ⊆ Out S3×C12484(S3xC12).38C2^2288,451
(S3×C12).39C22 = C24.64D6φ: C22/C2C2 ⊆ Out S3×C12484(S3xC12).39C2^2288,452
(S3×C12).40C22 = C2×D6.Dic3φ: C22/C2C2 ⊆ Out S3×C1296(S3xC12).40C2^2288,467
(S3×C12).41C22 = S3×C24⋊C2φ: C22/C2C2 ⊆ Out S3×C12484(S3xC12).41C2^2288,440
(S3×C12).42C22 = S3×D24φ: C22/C2C2 ⊆ Out S3×C12484+(S3xC12).42C2^2288,441
(S3×C12).43C22 = S3×Dic12φ: C22/C2C2 ⊆ Out S3×C12964-(S3xC12).43C2^2288,447
(S3×C12).44C22 = D6.1D12φ: C22/C2C2 ⊆ Out S3×C12484(S3xC12).44C2^2288,454
(S3×C12).45C22 = D247S3φ: C22/C2C2 ⊆ Out S3×C12964-(S3xC12).45C2^2288,455
(S3×C12).46C22 = D6.3D12φ: C22/C2C2 ⊆ Out S3×C12484+(S3xC12).46C2^2288,456
(S3×C12).47C22 = C3×S3×D8φ: C22/C2C2 ⊆ Out S3×C12484(S3xC12).47C2^2288,681
(S3×C12).48C22 = C3×D83S3φ: C22/C2C2 ⊆ Out S3×C12484(S3xC12).48C2^2288,683
(S3×C12).49C22 = C3×S3×SD16φ: C22/C2C2 ⊆ Out S3×C12484(S3xC12).49C2^2288,684
(S3×C12).50C22 = C3×Q8.7D6φ: C22/C2C2 ⊆ Out S3×C12484(S3xC12).50C2^2288,687
(S3×C12).51C22 = C3×S3×Q16φ: C22/C2C2 ⊆ Out S3×C12964(S3xC12).51C2^2288,688
(S3×C12).52C22 = C3×D24⋊C2φ: C22/C2C2 ⊆ Out S3×C12964(S3xC12).52C2^2288,690
(S3×C12).53C22 = C2×S3×Dic6φ: C22/C2C2 ⊆ Out S3×C1296(S3xC12).53C2^2288,942
(S3×C12).54C22 = S3×C6×Q8φ: C22/C2C2 ⊆ Out S3×C1296(S3xC12).54C2^2288,995
(S3×C12).55C22 = S32×C8φ: C22/C2C2 ⊆ Out S3×C12484(S3xC12).55C2^2288,437
(S3×C12).56C22 = C2×S3×C3⋊C8φ: C22/C2C2 ⊆ Out S3×C1296(S3xC12).56C2^2288,460
(S3×C12).57C22 = S3×C4.Dic3φ: C22/C2C2 ⊆ Out S3×C12484(S3xC12).57C2^2288,461
(S3×C12).58C22 = C6×C8⋊S3φ: C22/C2C2 ⊆ Out S3×C1296(S3xC12).58C2^2288,671
(S3×C12).59C22 = C3×C8○D12φ: C22/C2C2 ⊆ Out S3×C12482(S3xC12).59C2^2288,672
(S3×C12).60C22 = C3×D12.C4φ: C22/C2C2 ⊆ Out S3×C12484(S3xC12).60C2^2288,678
(S3×C12).61C22 = S3×C2×C24φ: trivial image96(S3xC12).61C2^2288,670
(S3×C12).62C22 = C3×S3×M4(2)φ: trivial image484(S3xC12).62C2^2288,677

׿
×
𝔽