extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C4○D12) = C62.6C23 | φ: C4○D12/Dic6 → C2 ⊆ Aut C6 | 48 | | C6.1(C4oD12) | 288,484 |
C6.2(C4○D12) = C62.11C23 | φ: C4○D12/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.2(C4oD12) | 288,489 |
C6.3(C4○D12) = Dic3×Dic6 | φ: C4○D12/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.3(C4oD12) | 288,490 |
C6.4(C4○D12) = Dic3.Dic6 | φ: C4○D12/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.4(C4oD12) | 288,493 |
C6.5(C4○D12) = C62.18C23 | φ: C4○D12/Dic6 → C2 ⊆ Aut C6 | 48 | | C6.5(C4oD12) | 288,496 |
C6.6(C4○D12) = C62.24C23 | φ: C4○D12/Dic6 → C2 ⊆ Aut C6 | 48 | | C6.6(C4oD12) | 288,502 |
C6.7(C4○D12) = D6⋊6Dic6 | φ: C4○D12/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.7(C4oD12) | 288,504 |
C6.8(C4○D12) = C62.31C23 | φ: C4○D12/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.8(C4oD12) | 288,509 |
C6.9(C4○D12) = C12.28D12 | φ: C4○D12/Dic6 → C2 ⊆ Aut C6 | 48 | | C6.9(C4oD12) | 288,512 |
C6.10(C4○D12) = C62.39C23 | φ: C4○D12/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.10(C4oD12) | 288,517 |
C6.11(C4○D12) = C62.58C23 | φ: C4○D12/Dic6 → C2 ⊆ Aut C6 | 48 | | C6.11(C4oD12) | 288,536 |
C6.12(C4○D12) = Dic3⋊5D12 | φ: C4○D12/Dic6 → C2 ⊆ Aut C6 | 48 | | C6.12(C4oD12) | 288,542 |
C6.13(C4○D12) = C62.67C23 | φ: C4○D12/Dic6 → C2 ⊆ Aut C6 | 48 | | C6.13(C4oD12) | 288,545 |
C6.14(C4○D12) = C62.74C23 | φ: C4○D12/Dic6 → C2 ⊆ Aut C6 | 48 | | C6.14(C4oD12) | 288,552 |
C6.15(C4○D12) = C62.77C23 | φ: C4○D12/Dic6 → C2 ⊆ Aut C6 | 48 | | C6.15(C4oD12) | 288,555 |
C6.16(C4○D12) = C12⋊7D12 | φ: C4○D12/Dic6 → C2 ⊆ Aut C6 | 48 | | C6.16(C4oD12) | 288,557 |
C6.17(C4○D12) = Dic3⋊3D12 | φ: C4○D12/Dic6 → C2 ⊆ Aut C6 | 48 | | C6.17(C4oD12) | 288,558 |
C6.18(C4○D12) = C62.20C23 | φ: C4○D12/C4×S3 → C2 ⊆ Aut C6 | 48 | | C6.18(C4oD12) | 288,498 |
C6.19(C4○D12) = D6⋊Dic6 | φ: C4○D12/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.19(C4oD12) | 288,499 |
C6.20(C4○D12) = Dic3.D12 | φ: C4○D12/C4×S3 → C2 ⊆ Aut C6 | 48 | | C6.20(C4oD12) | 288,500 |
C6.21(C4○D12) = C62.23C23 | φ: C4○D12/C4×S3 → C2 ⊆ Aut C6 | 48 | | C6.21(C4oD12) | 288,501 |
C6.22(C4○D12) = C62.25C23 | φ: C4○D12/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.22(C4oD12) | 288,503 |
C6.23(C4○D12) = C62.29C23 | φ: C4○D12/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.23(C4oD12) | 288,507 |
C6.24(C4○D12) = C62.32C23 | φ: C4○D12/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.24(C4oD12) | 288,510 |
C6.25(C4○D12) = C62.35C23 | φ: C4○D12/C4×S3 → C2 ⊆ Aut C6 | 48 | | C6.25(C4oD12) | 288,513 |
C6.26(C4○D12) = C62.37C23 | φ: C4○D12/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.26(C4oD12) | 288,515 |
C6.27(C4○D12) = C62.38C23 | φ: C4○D12/C4×S3 → C2 ⊆ Aut C6 | 48 | | C6.27(C4oD12) | 288,516 |
C6.28(C4○D12) = C62.40C23 | φ: C4○D12/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.28(C4oD12) | 288,518 |
C6.29(C4○D12) = C62.44C23 | φ: C4○D12/C4×S3 → C2 ⊆ Aut C6 | 48 | | C6.29(C4oD12) | 288,522 |
C6.30(C4○D12) = C4×D6⋊S3 | φ: C4○D12/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.30(C4oD12) | 288,549 |
C6.31(C4○D12) = C4×C3⋊D12 | φ: C4○D12/C4×S3 → C2 ⊆ Aut C6 | 48 | | C6.31(C4oD12) | 288,551 |
C6.32(C4○D12) = C62.75C23 | φ: C4○D12/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.32(C4oD12) | 288,553 |
C6.33(C4○D12) = D6⋊D12 | φ: C4○D12/C4×S3 → C2 ⊆ Aut C6 | 48 | | C6.33(C4oD12) | 288,554 |
C6.34(C4○D12) = C62.82C23 | φ: C4○D12/C4×S3 → C2 ⊆ Aut C6 | 48 | | C6.34(C4oD12) | 288,560 |
C6.35(C4○D12) = C62.85C23 | φ: C4○D12/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.35(C4oD12) | 288,563 |
C6.36(C4○D12) = C4×C32⋊2Q8 | φ: C4○D12/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.36(C4oD12) | 288,565 |
C6.37(C4○D12) = Dic3⋊6Dic6 | φ: C4○D12/D12 → C2 ⊆ Aut C6 | 96 | | C6.37(C4oD12) | 288,492 |
C6.38(C4○D12) = C62.17C23 | φ: C4○D12/D12 → C2 ⊆ Aut C6 | 96 | | C6.38(C4oD12) | 288,495 |
C6.39(C4○D12) = D6⋊7Dic6 | φ: C4○D12/D12 → C2 ⊆ Aut C6 | 96 | | C6.39(C4oD12) | 288,505 |
C6.40(C4○D12) = C62.28C23 | φ: C4○D12/D12 → C2 ⊆ Aut C6 | 96 | | C6.40(C4oD12) | 288,506 |
C6.41(C4○D12) = C12.27D12 | φ: C4○D12/D12 → C2 ⊆ Aut C6 | 96 | | C6.41(C4oD12) | 288,508 |
C6.42(C4○D12) = C62.49C23 | φ: C4○D12/D12 → C2 ⊆ Aut C6 | 96 | | C6.42(C4oD12) | 288,527 |
C6.43(C4○D12) = C62.54C23 | φ: C4○D12/D12 → C2 ⊆ Aut C6 | 96 | | C6.43(C4oD12) | 288,532 |
C6.44(C4○D12) = C62.55C23 | φ: C4○D12/D12 → C2 ⊆ Aut C6 | 96 | | C6.44(C4oD12) | 288,533 |
C6.45(C4○D12) = D6.9D12 | φ: C4○D12/D12 → C2 ⊆ Aut C6 | 96 | | C6.45(C4oD12) | 288,539 |
C6.46(C4○D12) = Dic3×D12 | φ: C4○D12/D12 → C2 ⊆ Aut C6 | 96 | | C6.46(C4oD12) | 288,540 |
C6.47(C4○D12) = D6⋊3Dic6 | φ: C4○D12/D12 → C2 ⊆ Aut C6 | 96 | | C6.47(C4oD12) | 288,544 |
C6.48(C4○D12) = D6⋊2D12 | φ: C4○D12/D12 → C2 ⊆ Aut C6 | 96 | | C6.48(C4oD12) | 288,556 |
C6.49(C4○D12) = C62.83C23 | φ: C4○D12/D12 → C2 ⊆ Aut C6 | 96 | | C6.49(C4oD12) | 288,561 |
C6.50(C4○D12) = Dic3⋊5Dic6 | φ: C4○D12/C3⋊D4 → C2 ⊆ Aut C6 | 96 | | C6.50(C4oD12) | 288,485 |
C6.51(C4○D12) = C62.16C23 | φ: C4○D12/C3⋊D4 → C2 ⊆ Aut C6 | 96 | | C6.51(C4oD12) | 288,494 |
C6.52(C4○D12) = C62.47C23 | φ: C4○D12/C3⋊D4 → C2 ⊆ Aut C6 | 96 | | C6.52(C4oD12) | 288,525 |
C6.53(C4○D12) = Dic3⋊4D12 | φ: C4○D12/C3⋊D4 → C2 ⊆ Aut C6 | 48 | | C6.53(C4oD12) | 288,528 |
C6.54(C4○D12) = D6.D12 | φ: C4○D12/C3⋊D4 → C2 ⊆ Aut C6 | 48 | | C6.54(C4oD12) | 288,538 |
C6.55(C4○D12) = C62.65C23 | φ: C4○D12/C3⋊D4 → C2 ⊆ Aut C6 | 48 | | C6.55(C4oD12) | 288,543 |
C6.56(C4○D12) = D6⋊4Dic6 | φ: C4○D12/C3⋊D4 → C2 ⊆ Aut C6 | 96 | | C6.56(C4oD12) | 288,547 |
C6.57(C4○D12) = C62.94C23 | φ: C4○D12/C3⋊D4 → C2 ⊆ Aut C6 | 48 | | C6.57(C4oD12) | 288,600 |
C6.58(C4○D12) = C62.95C23 | φ: C4○D12/C3⋊D4 → C2 ⊆ Aut C6 | 48 | | C6.58(C4oD12) | 288,601 |
C6.59(C4○D12) = C62.97C23 | φ: C4○D12/C3⋊D4 → C2 ⊆ Aut C6 | 48 | | C6.59(C4oD12) | 288,603 |
C6.60(C4○D12) = C62.98C23 | φ: C4○D12/C3⋊D4 → C2 ⊆ Aut C6 | 48 | | C6.60(C4oD12) | 288,604 |
C6.61(C4○D12) = C62.100C23 | φ: C4○D12/C3⋊D4 → C2 ⊆ Aut C6 | 48 | | C6.61(C4oD12) | 288,606 |
C6.62(C4○D12) = C62.101C23 | φ: C4○D12/C3⋊D4 → C2 ⊆ Aut C6 | 48 | | C6.62(C4oD12) | 288,607 |
C6.63(C4○D12) = C62.56D4 | φ: C4○D12/C3⋊D4 → C2 ⊆ Aut C6 | 48 | | C6.63(C4oD12) | 288,609 |
C6.64(C4○D12) = C62⋊3Q8 | φ: C4○D12/C3⋊D4 → C2 ⊆ Aut C6 | 48 | | C6.64(C4oD12) | 288,612 |
C6.65(C4○D12) = C62.60D4 | φ: C4○D12/C3⋊D4 → C2 ⊆ Aut C6 | 48 | | C6.65(C4oD12) | 288,614 |
C6.66(C4○D12) = C62.111C23 | φ: C4○D12/C3⋊D4 → C2 ⊆ Aut C6 | 48 | | C6.66(C4oD12) | 288,617 |
C6.67(C4○D12) = C62.113C23 | φ: C4○D12/C3⋊D4 → C2 ⊆ Aut C6 | 48 | | C6.67(C4oD12) | 288,619 |
C6.68(C4○D12) = Dic3×C3⋊D4 | φ: C4○D12/C3⋊D4 → C2 ⊆ Aut C6 | 48 | | C6.68(C4oD12) | 288,620 |
C6.69(C4○D12) = C62.117C23 | φ: C4○D12/C3⋊D4 → C2 ⊆ Aut C6 | 48 | | C6.69(C4oD12) | 288,623 |
C6.70(C4○D12) = C62⋊6D4 | φ: C4○D12/C3⋊D4 → C2 ⊆ Aut C6 | 48 | | C6.70(C4oD12) | 288,626 |
C6.71(C4○D12) = C4×Dic18 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.71(C4oD12) | 288,78 |
C6.72(C4○D12) = C36.6Q8 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.72(C4oD12) | 288,80 |
C6.73(C4○D12) = C42⋊2D9 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.73(C4oD12) | 288,82 |
C6.74(C4○D12) = C4×D36 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.74(C4oD12) | 288,83 |
C6.75(C4○D12) = C42⋊7D9 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.75(C4oD12) | 288,85 |
C6.76(C4○D12) = C42⋊3D9 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.76(C4oD12) | 288,86 |
C6.77(C4○D12) = C23.8D18 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.77(C4oD12) | 288,89 |
C6.78(C4○D12) = C23.9D18 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.78(C4oD12) | 288,93 |
C6.79(C4○D12) = D18⋊D4 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.79(C4oD12) | 288,94 |
C6.80(C4○D12) = Dic9.D4 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.80(C4oD12) | 288,95 |
C6.81(C4○D12) = Dic9.Q8 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.81(C4oD12) | 288,99 |
C6.82(C4○D12) = D18.D4 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.82(C4oD12) | 288,104 |
C6.83(C4○D12) = D18⋊Q8 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.83(C4oD12) | 288,106 |
C6.84(C4○D12) = C4⋊C4⋊D9 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.84(C4oD12) | 288,108 |
C6.85(C4○D12) = C36.49D4 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.85(C4oD12) | 288,134 |
C6.86(C4○D12) = C23.26D18 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.86(C4oD12) | 288,136 |
C6.87(C4○D12) = C4×C9⋊D4 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.87(C4oD12) | 288,138 |
C6.88(C4○D12) = C23.28D18 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.88(C4oD12) | 288,139 |
C6.89(C4○D12) = C36⋊7D4 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.89(C4oD12) | 288,140 |
C6.90(C4○D12) = C2×D36⋊5C2 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.90(C4oD12) | 288,355 |
C6.91(C4○D12) = C4×C32⋊4Q8 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.91(C4oD12) | 288,725 |
C6.92(C4○D12) = C12.25Dic6 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.92(C4oD12) | 288,727 |
C6.93(C4○D12) = C122⋊16C2 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.93(C4oD12) | 288,729 |
C6.94(C4○D12) = C4×C12⋊S3 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.94(C4oD12) | 288,730 |
C6.95(C4○D12) = C122⋊6C2 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.95(C4oD12) | 288,732 |
C6.96(C4○D12) = C122⋊2C2 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.96(C4oD12) | 288,733 |
C6.97(C4○D12) = C62.223C23 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.97(C4oD12) | 288,736 |
C6.98(C4○D12) = C62.227C23 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.98(C4oD12) | 288,740 |
C6.99(C4○D12) = C62.228C23 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.99(C4oD12) | 288,741 |
C6.100(C4○D12) = C62.229C23 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.100(C4oD12) | 288,742 |
C6.101(C4○D12) = C62.233C23 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.101(C4oD12) | 288,746 |
C6.102(C4○D12) = C62.238C23 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.102(C4oD12) | 288,751 |
C6.103(C4○D12) = C62.240C23 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.103(C4oD12) | 288,753 |
C6.104(C4○D12) = C62.242C23 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.104(C4oD12) | 288,755 |
C6.105(C4○D12) = C62⋊10Q8 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.105(C4oD12) | 288,781 |
C6.106(C4○D12) = C62.247C23 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.106(C4oD12) | 288,783 |
C6.107(C4○D12) = C4×C32⋊7D4 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.107(C4oD12) | 288,785 |
C6.108(C4○D12) = C62.129D4 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.108(C4oD12) | 288,786 |
C6.109(C4○D12) = C62⋊19D4 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.109(C4oD12) | 288,787 |
C6.110(C4○D12) = C12×Dic6 | central extension (φ=1) | 96 | | C6.110(C4oD12) | 288,639 |
C6.111(C4○D12) = C3×C12.6Q8 | central extension (φ=1) | 96 | | C6.111(C4oD12) | 288,641 |
C6.112(C4○D12) = C3×C42⋊2S3 | central extension (φ=1) | 96 | | C6.112(C4oD12) | 288,643 |
C6.113(C4○D12) = C12×D12 | central extension (φ=1) | 96 | | C6.113(C4oD12) | 288,644 |
C6.114(C4○D12) = C3×C42⋊7S3 | central extension (φ=1) | 96 | | C6.114(C4oD12) | 288,646 |
C6.115(C4○D12) = C3×C42⋊3S3 | central extension (φ=1) | 96 | | C6.115(C4oD12) | 288,647 |
C6.116(C4○D12) = C3×C23.8D6 | central extension (φ=1) | 48 | | C6.116(C4oD12) | 288,650 |
C6.117(C4○D12) = C3×C23.9D6 | central extension (φ=1) | 48 | | C6.117(C4oD12) | 288,654 |
C6.118(C4○D12) = C3×Dic3⋊D4 | central extension (φ=1) | 48 | | C6.118(C4oD12) | 288,655 |
C6.119(C4○D12) = C3×C23.11D6 | central extension (φ=1) | 48 | | C6.119(C4oD12) | 288,656 |
C6.120(C4○D12) = C3×Dic3.Q8 | central extension (φ=1) | 96 | | C6.120(C4oD12) | 288,660 |
C6.121(C4○D12) = C3×D6.D4 | central extension (φ=1) | 96 | | C6.121(C4oD12) | 288,665 |
C6.122(C4○D12) = C3×D6⋊Q8 | central extension (φ=1) | 96 | | C6.122(C4oD12) | 288,667 |
C6.123(C4○D12) = C3×C4⋊C4⋊S3 | central extension (φ=1) | 96 | | C6.123(C4oD12) | 288,669 |
C6.124(C4○D12) = C3×C12.48D4 | central extension (φ=1) | 48 | | C6.124(C4oD12) | 288,695 |
C6.125(C4○D12) = C3×C23.26D6 | central extension (φ=1) | 48 | | C6.125(C4oD12) | 288,697 |
C6.126(C4○D12) = C12×C3⋊D4 | central extension (φ=1) | 48 | | C6.126(C4oD12) | 288,699 |
C6.127(C4○D12) = C3×C23.28D6 | central extension (φ=1) | 48 | | C6.127(C4oD12) | 288,700 |
C6.128(C4○D12) = C3×C12⋊7D4 | central extension (φ=1) | 48 | | C6.128(C4oD12) | 288,701 |