Extensions 1→N→G→Q→1 with N=C12 and Q=D12

Direct product G=N×Q with N=C12 and Q=D12
dρLabelID
C12×D1296C12xD12288,644

Semidirect products G=N:Q with N=C12 and Q=D12
extensionφ:Q→Aut NdρLabelID
C121D12 = C12⋊D12φ: D12/C6C22 ⊆ Aut C1248C12:1D12288,559
C122D12 = C122D12φ: D12/C6C22 ⊆ Aut C1248C12:2D12288,564
C123D12 = C123D12φ: D12/C6C22 ⊆ Aut C12144C12:3D12288,752
C124D12 = C124D12φ: D12/C12C2 ⊆ Aut C12144C12:4D12288,731
C125D12 = C4×C12⋊S3φ: D12/C12C2 ⊆ Aut C12144C12:5D12288,730
C126D12 = C3×C4⋊D12φ: D12/C12C2 ⊆ Aut C1296C12:6D12288,645
C127D12 = C127D12φ: D12/D6C2 ⊆ Aut C1248C12:7D12288,557
C128D12 = C4×C3⋊D12φ: D12/D6C2 ⊆ Aut C1248C12:8D12288,551
C129D12 = C3×C12⋊D4φ: D12/D6C2 ⊆ Aut C1296C12:9D12288,666

Non-split extensions G=N.Q with N=C12 and Q=D12
extensionφ:Q→Aut NdρLabelID
C12.1D12 = C18.Q16φ: D12/C6C22 ⊆ Aut C12288C12.1D12288,16
C12.2D12 = C18.D8φ: D12/C6C22 ⊆ Aut C12144C12.2D12288,17
C12.3D12 = C4.D36φ: D12/C6C22 ⊆ Aut C121444-C12.3D12288,30
C12.4D12 = C36.48D4φ: D12/C6C22 ⊆ Aut C12724+C12.4D12288,31
C12.5D12 = C4⋊D36φ: D12/C6C22 ⊆ Aut C12144C12.5D12288,105
C12.6D12 = D182Q8φ: D12/C6C22 ⊆ Aut C12144C12.6D12288,107
C12.7D12 = C8⋊D18φ: D12/C6C22 ⊆ Aut C12724+C12.7D12288,118
C12.8D12 = C8.D18φ: D12/C6C22 ⊆ Aut C121444-C12.8D12288,119
C12.9D12 = C3⋊D48φ: D12/C6C22 ⊆ Aut C12484+C12.9D12288,194
C12.10D12 = C323SD32φ: D12/C6C22 ⊆ Aut C12964-C12.10D12288,196
C12.11D12 = C24.49D6φ: D12/C6C22 ⊆ Aut C12484+C12.11D12288,197
C12.12D12 = C323Q32φ: D12/C6C22 ⊆ Aut C12964-C12.12D12288,199
C12.13D12 = C12.D12φ: D12/C6C22 ⊆ Aut C12484C12.13D12288,206
C12.14D12 = C12.14D12φ: D12/C6C22 ⊆ Aut C12484C12.14D12288,208
C12.15D12 = D123Dic3φ: D12/C6C22 ⊆ Aut C1296C12.15D12288,210
C12.16D12 = Dic6⋊Dic3φ: D12/C6C22 ⊆ Aut C1296C12.16D12288,213
C12.17D12 = C62.113D4φ: D12/C6C22 ⊆ Aut C12144C12.17D12288,284
C12.18D12 = C62.114D4φ: D12/C6C22 ⊆ Aut C12288C12.18D12288,285
C12.19D12 = C12.19D12φ: D12/C6C22 ⊆ Aut C1272C12.19D12288,298
C12.20D12 = C12.20D12φ: D12/C6C22 ⊆ Aut C12144C12.20D12288,299
C12.21D12 = C2×C3⋊D24φ: D12/C6C22 ⊆ Aut C1248C12.21D12288,472
C12.22D12 = C2×D12.S3φ: D12/C6C22 ⊆ Aut C1296C12.22D12288,476
C12.23D12 = D12.28D6φ: D12/C6C22 ⊆ Aut C12484C12.23D12288,478
C12.24D12 = C2×C325SD16φ: D12/C6C22 ⊆ Aut C1248C12.24D12288,480
C12.25D12 = Dic6.29D6φ: D12/C6C22 ⊆ Aut C12484C12.25D12288,481
C12.26D12 = C2×C323Q16φ: D12/C6C22 ⊆ Aut C1296C12.26D12288,483
C12.27D12 = C12.27D12φ: D12/C6C22 ⊆ Aut C1296C12.27D12288,508
C12.28D12 = C12.28D12φ: D12/C6C22 ⊆ Aut C1248C12.28D12288,512
C12.29D12 = Dic3⋊Dic6φ: D12/C6C22 ⊆ Aut C1296C12.29D12288,514
C12.30D12 = C12.30D12φ: D12/C6C22 ⊆ Aut C1248C12.30D12288,519
C12.31D12 = C12.31D12φ: D12/C6C22 ⊆ Aut C12144C12.31D12288,754
C12.32D12 = C243D6φ: D12/C6C22 ⊆ Aut C1272C12.32D12288,765
C12.33D12 = C24.5D6φ: D12/C6C22 ⊆ Aut C12144C12.33D12288,766
C12.34D12 = D144φ: D12/C12C2 ⊆ Aut C121442+C12.34D12288,6
C12.35D12 = C144⋊C2φ: D12/C12C2 ⊆ Aut C121442C12.35D12288,7
C12.36D12 = Dic72φ: D12/C12C2 ⊆ Aut C122882-C12.36D12288,8
C12.37D12 = C362Q8φ: D12/C12C2 ⊆ Aut C12288C12.37D12288,79
C12.38D12 = C426D9φ: D12/C12C2 ⊆ Aut C12144C12.38D12288,84
C12.39D12 = C427D9φ: D12/C12C2 ⊆ Aut C12144C12.39D12288,85
C12.40D12 = C2×Dic36φ: D12/C12C2 ⊆ Aut C12288C12.40D12288,109
C12.41D12 = C2×C72⋊C2φ: D12/C12C2 ⊆ Aut C12144C12.41D12288,113
C12.42D12 = C2×D72φ: D12/C12C2 ⊆ Aut C12144C12.42D12288,114
C12.43D12 = C325D16φ: D12/C12C2 ⊆ Aut C12144C12.43D12288,274
C12.44D12 = C6.D24φ: D12/C12C2 ⊆ Aut C12144C12.44D12288,275
C12.45D12 = C325Q32φ: D12/C12C2 ⊆ Aut C12288C12.45D12288,276
C12.46D12 = C126Dic6φ: D12/C12C2 ⊆ Aut C12288C12.46D12288,726
C12.47D12 = C1226C2φ: D12/C12C2 ⊆ Aut C12144C12.47D12288,732
C12.48D12 = C2×C242S3φ: D12/C12C2 ⊆ Aut C12144C12.48D12288,759
C12.49D12 = C2×C325D8φ: D12/C12C2 ⊆ Aut C12144C12.49D12288,760
C12.50D12 = C2×C325Q16φ: D12/C12C2 ⊆ Aut C12288C12.50D12288,762
C12.51D12 = C36⋊C8φ: D12/C12C2 ⊆ Aut C12288C12.51D12288,11
C12.52D12 = C424D9φ: D12/C12C2 ⊆ Aut C12722C12.52D12288,12
C12.53D12 = C72.C4φ: D12/C12C2 ⊆ Aut C121442C12.53D12288,20
C12.54D12 = D18⋊C8φ: D12/C12C2 ⊆ Aut C12144C12.54D12288,27
C12.55D12 = C4×D36φ: D12/C12C2 ⊆ Aut C12144C12.55D12288,83
C12.56D12 = D727C2φ: D12/C12C2 ⊆ Aut C121442C12.56D12288,115
C12.57D12 = C12.57D12φ: D12/C12C2 ⊆ Aut C12288C12.57D12288,279
C12.58D12 = C122⋊C2φ: D12/C12C2 ⊆ Aut C1272C12.58D12288,280
C12.59D12 = C12.59D12φ: D12/C12C2 ⊆ Aut C12144C12.59D12288,294
C12.60D12 = C12.60D12φ: D12/C12C2 ⊆ Aut C12144C12.60D12288,295
C12.61D12 = C24.78D6φ: D12/C12C2 ⊆ Aut C12144C12.61D12288,761
C12.62D12 = C3×D48φ: D12/C12C2 ⊆ Aut C12962C12.62D12288,233
C12.63D12 = C3×C48⋊C2φ: D12/C12C2 ⊆ Aut C12962C12.63D12288,234
C12.64D12 = C3×Dic24φ: D12/C12C2 ⊆ Aut C12962C12.64D12288,235
C12.65D12 = C3×C122Q8φ: D12/C12C2 ⊆ Aut C1296C12.65D12288,640
C12.66D12 = C3×C427S3φ: D12/C12C2 ⊆ Aut C1296C12.66D12288,646
C12.67D12 = C6×C24⋊C2φ: D12/C12C2 ⊆ Aut C1296C12.67D12288,673
C12.68D12 = C6×D24φ: D12/C12C2 ⊆ Aut C1296C12.68D12288,674
C12.69D12 = C6×Dic12φ: D12/C12C2 ⊆ Aut C1296C12.69D12288,676
C12.70D12 = C12.70D12φ: D12/D6C2 ⊆ Aut C12244+C12.70D12288,207
C12.71D12 = C12.71D12φ: D12/D6C2 ⊆ Aut C12484-C12.71D12288,209
C12.72D12 = C6.17D24φ: D12/D6C2 ⊆ Aut C1248C12.72D12288,212
C12.73D12 = C12.73D12φ: D12/D6C2 ⊆ Aut C1296C12.73D12288,215
C12.74D12 = D1218D6φ: D12/D6C2 ⊆ Aut C12244+C12.74D12288,473
C12.75D12 = D12.29D6φ: D12/D6C2 ⊆ Aut C12484-C12.75D12288,479
C12.76D12 = D67Dic6φ: D12/D6C2 ⊆ Aut C1296C12.76D12288,505
C12.77D12 = C12.77D12φ: D12/D6C2 ⊆ Aut C1296C12.77D12288,204
C12.78D12 = C12.78D12φ: D12/D6C2 ⊆ Aut C1248C12.78D12288,205
C12.79D12 = D122Dic3φ: D12/D6C2 ⊆ Aut C12484C12.79D12288,217
C12.80D12 = C12.80D12φ: D12/D6C2 ⊆ Aut C12484C12.80D12288,218
C12.81D12 = C12.81D12φ: D12/D6C2 ⊆ Aut C1296C12.81D12288,219
C12.82D12 = C12.82D12φ: D12/D6C2 ⊆ Aut C12484C12.82D12288,225
C12.83D12 = D12.27D6φ: D12/D6C2 ⊆ Aut C12484C12.83D12288,477
C12.84D12 = C3×C6.D8φ: D12/D6C2 ⊆ Aut C1296C12.84D12288,243
C12.85D12 = C3×C6.SD16φ: D12/D6C2 ⊆ Aut C1296C12.85D12288,244
C12.86D12 = C3×C12.46D4φ: D12/D6C2 ⊆ Aut C12484C12.86D12288,257
C12.87D12 = C3×C12.47D4φ: D12/D6C2 ⊆ Aut C12484C12.87D12288,258
C12.88D12 = C3×C4.D12φ: D12/D6C2 ⊆ Aut C1296C12.88D12288,668
C12.89D12 = C3×C8⋊D6φ: D12/D6C2 ⊆ Aut C12484C12.89D12288,679
C12.90D12 = C3×C8.D6φ: D12/D6C2 ⊆ Aut C12484C12.90D12288,680
C12.91D12 = C3×C12⋊C8central extension (φ=1)96C12.91D12288,238
C12.92D12 = C3×C424S3central extension (φ=1)242C12.92D12288,239
C12.93D12 = C3×C24.C4central extension (φ=1)482C12.93D12288,253
C12.94D12 = C3×D6⋊C8central extension (φ=1)96C12.94D12288,254
C12.95D12 = C3×C4○D24central extension (φ=1)482C12.95D12288,675

׿
×
𝔽