Extensions 1→N→G→Q→1 with N=C4×S3 and Q=D6

Direct product G=N×Q with N=C4×S3 and Q=D6
dρLabelID
S32×C2×C448S3^2xC2xC4288,950

Semidirect products G=N:Q with N=C4×S3 and Q=D6
extensionφ:Q→Out NdρLabelID
(C4×S3)⋊1D6 = D1224D6φ: D6/C3C22 ⊆ Out C4×S3484(C4xS3):1D6288,955
(C4×S3)⋊2D6 = D1227D6φ: D6/C3C22 ⊆ Out C4×S3244+(C4xS3):2D6288,956
(C4×S3)⋊3D6 = D1212D6φ: D6/C3C22 ⊆ Out C4×S3488-(C4xS3):3D6288,961
(C4×S3)⋊4D6 = D1213D6φ: D6/C3C22 ⊆ Out C4×S3248+(C4xS3):4D6288,962
(C4×S3)⋊5D6 = D1216D6φ: D6/C3C22 ⊆ Out C4×S3488+(C4xS3):5D6288,968
(C4×S3)⋊6D6 = S32×D4φ: D6/S3C2 ⊆ Out C4×S3248+(C4xS3):6D6288,958
(C4×S3)⋊7D6 = S3×D42S3φ: D6/S3C2 ⊆ Out C4×S3488-(C4xS3):7D6288,959
(C4×S3)⋊8D6 = Dic612D6φ: D6/S3C2 ⊆ Out C4×S3248+(C4xS3):8D6288,960
(C4×S3)⋊9D6 = S3×Q83S3φ: D6/S3C2 ⊆ Out C4×S3488+(C4xS3):9D6288,966
(C4×S3)⋊10D6 = D1215D6φ: D6/S3C2 ⊆ Out C4×S3488-(C4xS3):10D6288,967
(C4×S3)⋊11D6 = D1223D6φ: D6/S3C2 ⊆ Out C4×S3244(C4xS3):11D6288,954
(C4×S3)⋊12D6 = C2×D125S3φ: D6/C6C2 ⊆ Out C4×S396(C4xS3):12D6288,943
(C4×S3)⋊13D6 = C2×D6.6D6φ: D6/C6C2 ⊆ Out C4×S348(C4xS3):13D6288,949
(C4×S3)⋊14D6 = C2×S3×D12φ: D6/C6C2 ⊆ Out C4×S348(C4xS3):14D6288,951
(C4×S3)⋊15D6 = S3×C4○D12φ: D6/C6C2 ⊆ Out C4×S3484(C4xS3):15D6288,953
(C4×S3)⋊16D6 = C2×D6.D6φ: D6/C6C2 ⊆ Out C4×S348(C4xS3):16D6288,948

Non-split extensions G=N.Q with N=C4×S3 and Q=D6
extensionφ:Q→Out NdρLabelID
(C4×S3).1D6 = C241D6φ: D6/C3C22 ⊆ Out C4×S3484+(C4xS3).1D6288,442
(C4×S3).2D6 = D24⋊S3φ: D6/C3C22 ⊆ Out C4×S3484(C4xS3).2D6288,443
(C4×S3).3D6 = C24.3D6φ: D6/C3C22 ⊆ Out C4×S3964-(C4xS3).3D6288,448
(C4×S3).4D6 = Dic12⋊S3φ: D6/C3C22 ⊆ Out C4×S3484(C4xS3).4D6288,449
(C4×S3).5D6 = Dic63D6φ: D6/C3C22 ⊆ Out C4×S3488+(C4xS3).5D6288,573
(C4×S3).6D6 = Dic6.19D6φ: D6/C3C22 ⊆ Out C4×S3488-(C4xS3).6D6288,577
(C4×S3).7D6 = D129D6φ: D6/C3C22 ⊆ Out C4×S3488-(C4xS3).7D6288,580
(C4×S3).8D6 = D12.7D6φ: D6/C3C22 ⊆ Out C4×S3488+(C4xS3).8D6288,582
(C4×S3).9D6 = D126D6φ: D6/C3C22 ⊆ Out C4×S3488+(C4xS3).9D6288,587
(C4×S3).10D6 = D12.11D6φ: D6/C3C22 ⊆ Out C4×S3968-(C4xS3).10D6288,591
(C4×S3).11D6 = D12.24D6φ: D6/C3C22 ⊆ Out C4×S3968-(C4xS3).11D6288,594
(C4×S3).12D6 = Dic6.22D6φ: D6/C3C22 ⊆ Out C4×S3488+(C4xS3).12D6288,596
(C4×S3).13D6 = D12.33D6φ: D6/C3C22 ⊆ Out C4×S3484(C4xS3).13D6288,945
(C4×S3).14D6 = D12.34D6φ: D6/C3C22 ⊆ Out C4×S3484-(C4xS3).14D6288,946
(C4×S3).15D6 = Dic6.24D6φ: D6/C3C22 ⊆ Out C4×S3488-(C4xS3).15D6288,957
(C4×S3).16D6 = D12.25D6φ: D6/C3C22 ⊆ Out C4×S3488-(C4xS3).16D6288,963
(C4×S3).17D6 = Dic6.26D6φ: D6/C3C22 ⊆ Out C4×S3488+(C4xS3).17D6288,964
(C4×S3).18D6 = S3×D4⋊S3φ: D6/S3C2 ⊆ Out C4×S3488+(C4xS3).18D6288,572
(C4×S3).19D6 = S3×D4.S3φ: D6/S3C2 ⊆ Out C4×S3488-(C4xS3).19D6288,576
(C4×S3).20D6 = D12.22D6φ: D6/S3C2 ⊆ Out C4×S3488-(C4xS3).20D6288,581
(C4×S3).21D6 = Dic6.20D6φ: D6/S3C2 ⊆ Out C4×S3488+(C4xS3).21D6288,583
(C4×S3).22D6 = S3×Q82S3φ: D6/S3C2 ⊆ Out C4×S3488+(C4xS3).22D6288,586
(C4×S3).23D6 = S3×C3⋊Q16φ: D6/S3C2 ⊆ Out C4×S3968-(C4xS3).23D6288,590
(C4×S3).24D6 = D12.12D6φ: D6/S3C2 ⊆ Out C4×S3968-(C4xS3).24D6288,595
(C4×S3).25D6 = D12.13D6φ: D6/S3C2 ⊆ Out C4×S3488+(C4xS3).25D6288,597
(C4×S3).26D6 = S32×Q8φ: D6/S3C2 ⊆ Out C4×S3488-(C4xS3).26D6288,965
(C4×S3).27D6 = S3×C8⋊S3φ: D6/S3C2 ⊆ Out C4×S3484(C4xS3).27D6288,438
(C4×S3).28D6 = C24⋊D6φ: D6/S3C2 ⊆ Out C4×S3484(C4xS3).28D6288,439
(C4×S3).29D6 = C24.64D6φ: D6/S3C2 ⊆ Out C4×S3484(C4xS3).29D6288,452
(C4×S3).30D6 = C24.D6φ: D6/S3C2 ⊆ Out C4×S3484(C4xS3).30D6288,453
(C4×S3).31D6 = D12.2Dic3φ: D6/S3C2 ⊆ Out C4×S3484(C4xS3).31D6288,462
(C4×S3).32D6 = D12.Dic3φ: D6/S3C2 ⊆ Out C4×S3484(C4xS3).32D6288,463
(C4×S3).33D6 = S3×C24⋊C2φ: D6/C6C2 ⊆ Out C4×S3484(C4xS3).33D6288,440
(C4×S3).34D6 = S3×D24φ: D6/C6C2 ⊆ Out C4×S3484+(C4xS3).34D6288,441
(C4×S3).35D6 = S3×Dic12φ: D6/C6C2 ⊆ Out C4×S3964-(C4xS3).35D6288,447
(C4×S3).36D6 = D6.1D12φ: D6/C6C2 ⊆ Out C4×S3484(C4xS3).36D6288,454
(C4×S3).37D6 = D247S3φ: D6/C6C2 ⊆ Out C4×S3964-(C4xS3).37D6288,455
(C4×S3).38D6 = D6.3D12φ: D6/C6C2 ⊆ Out C4×S3484+(C4xS3).38D6288,456
(C4×S3).39D6 = C2×S3×Dic6φ: D6/C6C2 ⊆ Out C4×S396(C4xS3).39D6288,942
(C4×S3).40D6 = C24.63D6φ: D6/C6C2 ⊆ Out C4×S3484(C4xS3).40D6288,451
(C4×S3).41D6 = S3×C4.Dic3φ: D6/C6C2 ⊆ Out C4×S3484(C4xS3).41D6288,461
(C4×S3).42D6 = C2×D6.Dic3φ: D6/C6C2 ⊆ Out C4×S396(C4xS3).42D6288,467
(C4×S3).43D6 = S32×C8φ: trivial image484(C4xS3).43D6288,437
(C4×S3).44D6 = C2×S3×C3⋊C8φ: trivial image96(C4xS3).44D6288,460

׿
×
𝔽