extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×S3)⋊1D6 = D12⋊24D6 | φ: D6/C3 → C22 ⊆ Out C4×S3 | 48 | 4 | (C4xS3):1D6 | 288,955 |
(C4×S3)⋊2D6 = D12⋊27D6 | φ: D6/C3 → C22 ⊆ Out C4×S3 | 24 | 4+ | (C4xS3):2D6 | 288,956 |
(C4×S3)⋊3D6 = D12⋊12D6 | φ: D6/C3 → C22 ⊆ Out C4×S3 | 48 | 8- | (C4xS3):3D6 | 288,961 |
(C4×S3)⋊4D6 = D12⋊13D6 | φ: D6/C3 → C22 ⊆ Out C4×S3 | 24 | 8+ | (C4xS3):4D6 | 288,962 |
(C4×S3)⋊5D6 = D12⋊16D6 | φ: D6/C3 → C22 ⊆ Out C4×S3 | 48 | 8+ | (C4xS3):5D6 | 288,968 |
(C4×S3)⋊6D6 = S32×D4 | φ: D6/S3 → C2 ⊆ Out C4×S3 | 24 | 8+ | (C4xS3):6D6 | 288,958 |
(C4×S3)⋊7D6 = S3×D4⋊2S3 | φ: D6/S3 → C2 ⊆ Out C4×S3 | 48 | 8- | (C4xS3):7D6 | 288,959 |
(C4×S3)⋊8D6 = Dic6⋊12D6 | φ: D6/S3 → C2 ⊆ Out C4×S3 | 24 | 8+ | (C4xS3):8D6 | 288,960 |
(C4×S3)⋊9D6 = S3×Q8⋊3S3 | φ: D6/S3 → C2 ⊆ Out C4×S3 | 48 | 8+ | (C4xS3):9D6 | 288,966 |
(C4×S3)⋊10D6 = D12⋊15D6 | φ: D6/S3 → C2 ⊆ Out C4×S3 | 48 | 8- | (C4xS3):10D6 | 288,967 |
(C4×S3)⋊11D6 = D12⋊23D6 | φ: D6/S3 → C2 ⊆ Out C4×S3 | 24 | 4 | (C4xS3):11D6 | 288,954 |
(C4×S3)⋊12D6 = C2×D12⋊5S3 | φ: D6/C6 → C2 ⊆ Out C4×S3 | 96 | | (C4xS3):12D6 | 288,943 |
(C4×S3)⋊13D6 = C2×D6.6D6 | φ: D6/C6 → C2 ⊆ Out C4×S3 | 48 | | (C4xS3):13D6 | 288,949 |
(C4×S3)⋊14D6 = C2×S3×D12 | φ: D6/C6 → C2 ⊆ Out C4×S3 | 48 | | (C4xS3):14D6 | 288,951 |
(C4×S3)⋊15D6 = S3×C4○D12 | φ: D6/C6 → C2 ⊆ Out C4×S3 | 48 | 4 | (C4xS3):15D6 | 288,953 |
(C4×S3)⋊16D6 = C2×D6.D6 | φ: D6/C6 → C2 ⊆ Out C4×S3 | 48 | | (C4xS3):16D6 | 288,948 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×S3).1D6 = C24⋊1D6 | φ: D6/C3 → C22 ⊆ Out C4×S3 | 48 | 4+ | (C4xS3).1D6 | 288,442 |
(C4×S3).2D6 = D24⋊S3 | φ: D6/C3 → C22 ⊆ Out C4×S3 | 48 | 4 | (C4xS3).2D6 | 288,443 |
(C4×S3).3D6 = C24.3D6 | φ: D6/C3 → C22 ⊆ Out C4×S3 | 96 | 4- | (C4xS3).3D6 | 288,448 |
(C4×S3).4D6 = Dic12⋊S3 | φ: D6/C3 → C22 ⊆ Out C4×S3 | 48 | 4 | (C4xS3).4D6 | 288,449 |
(C4×S3).5D6 = Dic6⋊3D6 | φ: D6/C3 → C22 ⊆ Out C4×S3 | 48 | 8+ | (C4xS3).5D6 | 288,573 |
(C4×S3).6D6 = Dic6.19D6 | φ: D6/C3 → C22 ⊆ Out C4×S3 | 48 | 8- | (C4xS3).6D6 | 288,577 |
(C4×S3).7D6 = D12⋊9D6 | φ: D6/C3 → C22 ⊆ Out C4×S3 | 48 | 8- | (C4xS3).7D6 | 288,580 |
(C4×S3).8D6 = D12.7D6 | φ: D6/C3 → C22 ⊆ Out C4×S3 | 48 | 8+ | (C4xS3).8D6 | 288,582 |
(C4×S3).9D6 = D12⋊6D6 | φ: D6/C3 → C22 ⊆ Out C4×S3 | 48 | 8+ | (C4xS3).9D6 | 288,587 |
(C4×S3).10D6 = D12.11D6 | φ: D6/C3 → C22 ⊆ Out C4×S3 | 96 | 8- | (C4xS3).10D6 | 288,591 |
(C4×S3).11D6 = D12.24D6 | φ: D6/C3 → C22 ⊆ Out C4×S3 | 96 | 8- | (C4xS3).11D6 | 288,594 |
(C4×S3).12D6 = Dic6.22D6 | φ: D6/C3 → C22 ⊆ Out C4×S3 | 48 | 8+ | (C4xS3).12D6 | 288,596 |
(C4×S3).13D6 = D12.33D6 | φ: D6/C3 → C22 ⊆ Out C4×S3 | 48 | 4 | (C4xS3).13D6 | 288,945 |
(C4×S3).14D6 = D12.34D6 | φ: D6/C3 → C22 ⊆ Out C4×S3 | 48 | 4- | (C4xS3).14D6 | 288,946 |
(C4×S3).15D6 = Dic6.24D6 | φ: D6/C3 → C22 ⊆ Out C4×S3 | 48 | 8- | (C4xS3).15D6 | 288,957 |
(C4×S3).16D6 = D12.25D6 | φ: D6/C3 → C22 ⊆ Out C4×S3 | 48 | 8- | (C4xS3).16D6 | 288,963 |
(C4×S3).17D6 = Dic6.26D6 | φ: D6/C3 → C22 ⊆ Out C4×S3 | 48 | 8+ | (C4xS3).17D6 | 288,964 |
(C4×S3).18D6 = S3×D4⋊S3 | φ: D6/S3 → C2 ⊆ Out C4×S3 | 48 | 8+ | (C4xS3).18D6 | 288,572 |
(C4×S3).19D6 = S3×D4.S3 | φ: D6/S3 → C2 ⊆ Out C4×S3 | 48 | 8- | (C4xS3).19D6 | 288,576 |
(C4×S3).20D6 = D12.22D6 | φ: D6/S3 → C2 ⊆ Out C4×S3 | 48 | 8- | (C4xS3).20D6 | 288,581 |
(C4×S3).21D6 = Dic6.20D6 | φ: D6/S3 → C2 ⊆ Out C4×S3 | 48 | 8+ | (C4xS3).21D6 | 288,583 |
(C4×S3).22D6 = S3×Q8⋊2S3 | φ: D6/S3 → C2 ⊆ Out C4×S3 | 48 | 8+ | (C4xS3).22D6 | 288,586 |
(C4×S3).23D6 = S3×C3⋊Q16 | φ: D6/S3 → C2 ⊆ Out C4×S3 | 96 | 8- | (C4xS3).23D6 | 288,590 |
(C4×S3).24D6 = D12.12D6 | φ: D6/S3 → C2 ⊆ Out C4×S3 | 96 | 8- | (C4xS3).24D6 | 288,595 |
(C4×S3).25D6 = D12.13D6 | φ: D6/S3 → C2 ⊆ Out C4×S3 | 48 | 8+ | (C4xS3).25D6 | 288,597 |
(C4×S3).26D6 = S32×Q8 | φ: D6/S3 → C2 ⊆ Out C4×S3 | 48 | 8- | (C4xS3).26D6 | 288,965 |
(C4×S3).27D6 = S3×C8⋊S3 | φ: D6/S3 → C2 ⊆ Out C4×S3 | 48 | 4 | (C4xS3).27D6 | 288,438 |
(C4×S3).28D6 = C24⋊D6 | φ: D6/S3 → C2 ⊆ Out C4×S3 | 48 | 4 | (C4xS3).28D6 | 288,439 |
(C4×S3).29D6 = C24.64D6 | φ: D6/S3 → C2 ⊆ Out C4×S3 | 48 | 4 | (C4xS3).29D6 | 288,452 |
(C4×S3).30D6 = C24.D6 | φ: D6/S3 → C2 ⊆ Out C4×S3 | 48 | 4 | (C4xS3).30D6 | 288,453 |
(C4×S3).31D6 = D12.2Dic3 | φ: D6/S3 → C2 ⊆ Out C4×S3 | 48 | 4 | (C4xS3).31D6 | 288,462 |
(C4×S3).32D6 = D12.Dic3 | φ: D6/S3 → C2 ⊆ Out C4×S3 | 48 | 4 | (C4xS3).32D6 | 288,463 |
(C4×S3).33D6 = S3×C24⋊C2 | φ: D6/C6 → C2 ⊆ Out C4×S3 | 48 | 4 | (C4xS3).33D6 | 288,440 |
(C4×S3).34D6 = S3×D24 | φ: D6/C6 → C2 ⊆ Out C4×S3 | 48 | 4+ | (C4xS3).34D6 | 288,441 |
(C4×S3).35D6 = S3×Dic12 | φ: D6/C6 → C2 ⊆ Out C4×S3 | 96 | 4- | (C4xS3).35D6 | 288,447 |
(C4×S3).36D6 = D6.1D12 | φ: D6/C6 → C2 ⊆ Out C4×S3 | 48 | 4 | (C4xS3).36D6 | 288,454 |
(C4×S3).37D6 = D24⋊7S3 | φ: D6/C6 → C2 ⊆ Out C4×S3 | 96 | 4- | (C4xS3).37D6 | 288,455 |
(C4×S3).38D6 = D6.3D12 | φ: D6/C6 → C2 ⊆ Out C4×S3 | 48 | 4+ | (C4xS3).38D6 | 288,456 |
(C4×S3).39D6 = C2×S3×Dic6 | φ: D6/C6 → C2 ⊆ Out C4×S3 | 96 | | (C4xS3).39D6 | 288,942 |
(C4×S3).40D6 = C24.63D6 | φ: D6/C6 → C2 ⊆ Out C4×S3 | 48 | 4 | (C4xS3).40D6 | 288,451 |
(C4×S3).41D6 = S3×C4.Dic3 | φ: D6/C6 → C2 ⊆ Out C4×S3 | 48 | 4 | (C4xS3).41D6 | 288,461 |
(C4×S3).42D6 = C2×D6.Dic3 | φ: D6/C6 → C2 ⊆ Out C4×S3 | 96 | | (C4xS3).42D6 | 288,467 |
(C4×S3).43D6 = S32×C8 | φ: trivial image | 48 | 4 | (C4xS3).43D6 | 288,437 |
(C4×S3).44D6 = C2×S3×C3⋊C8 | φ: trivial image | 96 | | (C4xS3).44D6 | 288,460 |