Copied to
clipboard

?

G = C10.252- (1+4)order 320 = 26·5

25th non-split extension by C10 of 2- (1+4) acting via 2- (1+4)/C2×Q8=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C10.252- (1+4), C10.582+ (1+4), C20⋊Q829C2, C22⋊Q823D5, C4⋊C4.101D10, (C2×Q8).79D10, D10⋊Q824C2, D103Q825C2, C22⋊C4.23D10, C4.Dic1027C2, Dic5⋊Q818C2, C20.48D447C2, (C2×C10).190C24, (C2×C20).176C23, (C22×C4).252D10, C2.60(D46D10), Dic5.Q822C2, D10.12D4.3C2, D10⋊C4.8C22, C23.D1026C2, C4⋊Dic5.222C22, Dic5.5D4.3C2, (Q8×C10).119C22, (C2×Dic5).96C23, (C22×D5).81C23, C22.211(C23×D5), C23.126(C22×D5), C23.D5.36C22, (C22×C10).218C23, (C22×C20).318C22, C51(C22.57C24), (C2×Dic10).37C22, (C4×Dic5).125C22, C23.23D10.3C2, C10.D4.81C22, C2.39(D4.10D10), C2.26(Q8.10D10), C4⋊C4⋊D525C2, (C5×C22⋊Q8)⋊26C2, (C2×C4×D5).115C22, (C5×C4⋊C4).170C22, (C2×C4).187(C22×D5), (C2×C5⋊D4).42C22, (C5×C22⋊C4).45C22, SmallGroup(320,1318)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C10.252- (1+4)
C1C5C10C2×C10C22×D5C2×C4×D5D10.12D4 — C10.252- (1+4)
C5C2×C10 — C10.252- (1+4)

Subgroups: 646 in 196 conjugacy classes, 91 normal (all characteristic)
C1, C2 [×3], C2 [×2], C4 [×13], C22, C22 [×6], C5, C2×C4 [×6], C2×C4 [×9], D4, Q8 [×3], C23, C23, D5, C10 [×3], C10, C42 [×3], C22⋊C4 [×2], C22⋊C4 [×8], C4⋊C4 [×3], C4⋊C4 [×13], C22×C4, C22×C4, C2×D4, C2×Q8, C2×Q8 [×2], Dic5 [×7], C20 [×6], D10 [×3], C2×C10, C2×C10 [×3], C22⋊Q8, C22⋊Q8 [×3], C22.D4 [×2], C4.4D4, C42.C2 [×2], C422C2 [×4], C4⋊Q8 [×2], Dic10 [×2], C4×D5, C2×Dic5 [×7], C5⋊D4, C2×C20 [×6], C2×C20, C5×Q8, C22×D5, C22×C10, C22.57C24, C4×Dic5 [×3], C10.D4 [×9], C4⋊Dic5 [×4], D10⋊C4 [×5], C23.D5 [×3], C5×C22⋊C4 [×2], C5×C4⋊C4 [×3], C2×Dic10 [×2], C2×C4×D5, C2×C5⋊D4, C22×C20, Q8×C10, C23.D10 [×2], D10.12D4, Dic5.5D4, C20⋊Q8, Dic5.Q8, C4.Dic10, D10⋊Q8, C4⋊C4⋊D5 [×2], C20.48D4, C23.23D10, Dic5⋊Q8, D103Q8, C5×C22⋊Q8, C10.252- (1+4)

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C24, D10 [×7], 2+ (1+4), 2- (1+4) [×2], C22×D5 [×7], C22.57C24, C23×D5, D46D10, Q8.10D10, D4.10D10, C10.252- (1+4)

Generators and relations
 G = < a,b,c,d,e | a10=b4=1, c2=a5, d2=e2=b2, ab=ba, cac-1=eae-1=a-1, ad=da, cbc-1=a5b-1, bd=db, ebe-1=a5b, dcd-1=a5c, ce=ec, ede-1=b2d >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 45 30 33)(2 46 21 34)(3 47 22 35)(4 48 23 36)(5 49 24 37)(6 50 25 38)(7 41 26 39)(8 42 27 40)(9 43 28 31)(10 44 29 32)(11 138 153 150)(12 139 154 141)(13 140 155 142)(14 131 156 143)(15 132 157 144)(16 133 158 145)(17 134 159 146)(18 135 160 147)(19 136 151 148)(20 137 152 149)(51 88 63 76)(52 89 64 77)(53 90 65 78)(54 81 66 79)(55 82 67 80)(56 83 68 71)(57 84 69 72)(58 85 70 73)(59 86 61 74)(60 87 62 75)(91 116 103 128)(92 117 104 129)(93 118 105 130)(94 119 106 121)(95 120 107 122)(96 111 108 123)(97 112 109 124)(98 113 110 125)(99 114 101 126)(100 115 102 127)
(1 33 6 38)(2 32 7 37)(3 31 8 36)(4 40 9 35)(5 39 10 34)(11 145 16 150)(12 144 17 149)(13 143 18 148)(14 142 19 147)(15 141 20 146)(21 44 26 49)(22 43 27 48)(23 42 28 47)(24 41 29 46)(25 50 30 45)(51 82 56 87)(52 81 57 86)(53 90 58 85)(54 89 59 84)(55 88 60 83)(61 72 66 77)(62 71 67 76)(63 80 68 75)(64 79 69 74)(65 78 70 73)(91 122 96 127)(92 121 97 126)(93 130 98 125)(94 129 99 124)(95 128 100 123)(101 112 106 117)(102 111 107 116)(103 120 108 115)(104 119 109 114)(105 118 110 113)(131 160 136 155)(132 159 137 154)(133 158 138 153)(134 157 139 152)(135 156 140 151)
(1 85 30 73)(2 86 21 74)(3 87 22 75)(4 88 23 76)(5 89 24 77)(6 90 25 78)(7 81 26 79)(8 82 27 80)(9 83 28 71)(10 84 29 72)(11 93 153 105)(12 94 154 106)(13 95 155 107)(14 96 156 108)(15 97 157 109)(16 98 158 110)(17 99 159 101)(18 100 160 102)(19 91 151 103)(20 92 152 104)(31 56 43 68)(32 57 44 69)(33 58 45 70)(34 59 46 61)(35 60 47 62)(36 51 48 63)(37 52 49 64)(38 53 50 65)(39 54 41 66)(40 55 42 67)(111 143 123 131)(112 144 124 132)(113 145 125 133)(114 146 126 134)(115 147 127 135)(116 148 128 136)(117 149 129 137)(118 150 130 138)(119 141 121 139)(120 142 122 140)
(1 16 30 158)(2 15 21 157)(3 14 22 156)(4 13 23 155)(5 12 24 154)(6 11 25 153)(7 20 26 152)(8 19 27 151)(9 18 28 160)(10 17 29 159)(31 142 43 140)(32 141 44 139)(33 150 45 138)(34 149 46 137)(35 148 47 136)(36 147 48 135)(37 146 49 134)(38 145 50 133)(39 144 41 132)(40 143 42 131)(51 115 63 127)(52 114 64 126)(53 113 65 125)(54 112 66 124)(55 111 67 123)(56 120 68 122)(57 119 69 121)(58 118 70 130)(59 117 61 129)(60 116 62 128)(71 100 83 102)(72 99 84 101)(73 98 85 110)(74 97 86 109)(75 96 87 108)(76 95 88 107)(77 94 89 106)(78 93 90 105)(79 92 81 104)(80 91 82 103)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,45,30,33)(2,46,21,34)(3,47,22,35)(4,48,23,36)(5,49,24,37)(6,50,25,38)(7,41,26,39)(8,42,27,40)(9,43,28,31)(10,44,29,32)(11,138,153,150)(12,139,154,141)(13,140,155,142)(14,131,156,143)(15,132,157,144)(16,133,158,145)(17,134,159,146)(18,135,160,147)(19,136,151,148)(20,137,152,149)(51,88,63,76)(52,89,64,77)(53,90,65,78)(54,81,66,79)(55,82,67,80)(56,83,68,71)(57,84,69,72)(58,85,70,73)(59,86,61,74)(60,87,62,75)(91,116,103,128)(92,117,104,129)(93,118,105,130)(94,119,106,121)(95,120,107,122)(96,111,108,123)(97,112,109,124)(98,113,110,125)(99,114,101,126)(100,115,102,127), (1,33,6,38)(2,32,7,37)(3,31,8,36)(4,40,9,35)(5,39,10,34)(11,145,16,150)(12,144,17,149)(13,143,18,148)(14,142,19,147)(15,141,20,146)(21,44,26,49)(22,43,27,48)(23,42,28,47)(24,41,29,46)(25,50,30,45)(51,82,56,87)(52,81,57,86)(53,90,58,85)(54,89,59,84)(55,88,60,83)(61,72,66,77)(62,71,67,76)(63,80,68,75)(64,79,69,74)(65,78,70,73)(91,122,96,127)(92,121,97,126)(93,130,98,125)(94,129,99,124)(95,128,100,123)(101,112,106,117)(102,111,107,116)(103,120,108,115)(104,119,109,114)(105,118,110,113)(131,160,136,155)(132,159,137,154)(133,158,138,153)(134,157,139,152)(135,156,140,151), (1,85,30,73)(2,86,21,74)(3,87,22,75)(4,88,23,76)(5,89,24,77)(6,90,25,78)(7,81,26,79)(8,82,27,80)(9,83,28,71)(10,84,29,72)(11,93,153,105)(12,94,154,106)(13,95,155,107)(14,96,156,108)(15,97,157,109)(16,98,158,110)(17,99,159,101)(18,100,160,102)(19,91,151,103)(20,92,152,104)(31,56,43,68)(32,57,44,69)(33,58,45,70)(34,59,46,61)(35,60,47,62)(36,51,48,63)(37,52,49,64)(38,53,50,65)(39,54,41,66)(40,55,42,67)(111,143,123,131)(112,144,124,132)(113,145,125,133)(114,146,126,134)(115,147,127,135)(116,148,128,136)(117,149,129,137)(118,150,130,138)(119,141,121,139)(120,142,122,140), (1,16,30,158)(2,15,21,157)(3,14,22,156)(4,13,23,155)(5,12,24,154)(6,11,25,153)(7,20,26,152)(8,19,27,151)(9,18,28,160)(10,17,29,159)(31,142,43,140)(32,141,44,139)(33,150,45,138)(34,149,46,137)(35,148,47,136)(36,147,48,135)(37,146,49,134)(38,145,50,133)(39,144,41,132)(40,143,42,131)(51,115,63,127)(52,114,64,126)(53,113,65,125)(54,112,66,124)(55,111,67,123)(56,120,68,122)(57,119,69,121)(58,118,70,130)(59,117,61,129)(60,116,62,128)(71,100,83,102)(72,99,84,101)(73,98,85,110)(74,97,86,109)(75,96,87,108)(76,95,88,107)(77,94,89,106)(78,93,90,105)(79,92,81,104)(80,91,82,103)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,45,30,33)(2,46,21,34)(3,47,22,35)(4,48,23,36)(5,49,24,37)(6,50,25,38)(7,41,26,39)(8,42,27,40)(9,43,28,31)(10,44,29,32)(11,138,153,150)(12,139,154,141)(13,140,155,142)(14,131,156,143)(15,132,157,144)(16,133,158,145)(17,134,159,146)(18,135,160,147)(19,136,151,148)(20,137,152,149)(51,88,63,76)(52,89,64,77)(53,90,65,78)(54,81,66,79)(55,82,67,80)(56,83,68,71)(57,84,69,72)(58,85,70,73)(59,86,61,74)(60,87,62,75)(91,116,103,128)(92,117,104,129)(93,118,105,130)(94,119,106,121)(95,120,107,122)(96,111,108,123)(97,112,109,124)(98,113,110,125)(99,114,101,126)(100,115,102,127), (1,33,6,38)(2,32,7,37)(3,31,8,36)(4,40,9,35)(5,39,10,34)(11,145,16,150)(12,144,17,149)(13,143,18,148)(14,142,19,147)(15,141,20,146)(21,44,26,49)(22,43,27,48)(23,42,28,47)(24,41,29,46)(25,50,30,45)(51,82,56,87)(52,81,57,86)(53,90,58,85)(54,89,59,84)(55,88,60,83)(61,72,66,77)(62,71,67,76)(63,80,68,75)(64,79,69,74)(65,78,70,73)(91,122,96,127)(92,121,97,126)(93,130,98,125)(94,129,99,124)(95,128,100,123)(101,112,106,117)(102,111,107,116)(103,120,108,115)(104,119,109,114)(105,118,110,113)(131,160,136,155)(132,159,137,154)(133,158,138,153)(134,157,139,152)(135,156,140,151), (1,85,30,73)(2,86,21,74)(3,87,22,75)(4,88,23,76)(5,89,24,77)(6,90,25,78)(7,81,26,79)(8,82,27,80)(9,83,28,71)(10,84,29,72)(11,93,153,105)(12,94,154,106)(13,95,155,107)(14,96,156,108)(15,97,157,109)(16,98,158,110)(17,99,159,101)(18,100,160,102)(19,91,151,103)(20,92,152,104)(31,56,43,68)(32,57,44,69)(33,58,45,70)(34,59,46,61)(35,60,47,62)(36,51,48,63)(37,52,49,64)(38,53,50,65)(39,54,41,66)(40,55,42,67)(111,143,123,131)(112,144,124,132)(113,145,125,133)(114,146,126,134)(115,147,127,135)(116,148,128,136)(117,149,129,137)(118,150,130,138)(119,141,121,139)(120,142,122,140), (1,16,30,158)(2,15,21,157)(3,14,22,156)(4,13,23,155)(5,12,24,154)(6,11,25,153)(7,20,26,152)(8,19,27,151)(9,18,28,160)(10,17,29,159)(31,142,43,140)(32,141,44,139)(33,150,45,138)(34,149,46,137)(35,148,47,136)(36,147,48,135)(37,146,49,134)(38,145,50,133)(39,144,41,132)(40,143,42,131)(51,115,63,127)(52,114,64,126)(53,113,65,125)(54,112,66,124)(55,111,67,123)(56,120,68,122)(57,119,69,121)(58,118,70,130)(59,117,61,129)(60,116,62,128)(71,100,83,102)(72,99,84,101)(73,98,85,110)(74,97,86,109)(75,96,87,108)(76,95,88,107)(77,94,89,106)(78,93,90,105)(79,92,81,104)(80,91,82,103) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,45,30,33),(2,46,21,34),(3,47,22,35),(4,48,23,36),(5,49,24,37),(6,50,25,38),(7,41,26,39),(8,42,27,40),(9,43,28,31),(10,44,29,32),(11,138,153,150),(12,139,154,141),(13,140,155,142),(14,131,156,143),(15,132,157,144),(16,133,158,145),(17,134,159,146),(18,135,160,147),(19,136,151,148),(20,137,152,149),(51,88,63,76),(52,89,64,77),(53,90,65,78),(54,81,66,79),(55,82,67,80),(56,83,68,71),(57,84,69,72),(58,85,70,73),(59,86,61,74),(60,87,62,75),(91,116,103,128),(92,117,104,129),(93,118,105,130),(94,119,106,121),(95,120,107,122),(96,111,108,123),(97,112,109,124),(98,113,110,125),(99,114,101,126),(100,115,102,127)], [(1,33,6,38),(2,32,7,37),(3,31,8,36),(4,40,9,35),(5,39,10,34),(11,145,16,150),(12,144,17,149),(13,143,18,148),(14,142,19,147),(15,141,20,146),(21,44,26,49),(22,43,27,48),(23,42,28,47),(24,41,29,46),(25,50,30,45),(51,82,56,87),(52,81,57,86),(53,90,58,85),(54,89,59,84),(55,88,60,83),(61,72,66,77),(62,71,67,76),(63,80,68,75),(64,79,69,74),(65,78,70,73),(91,122,96,127),(92,121,97,126),(93,130,98,125),(94,129,99,124),(95,128,100,123),(101,112,106,117),(102,111,107,116),(103,120,108,115),(104,119,109,114),(105,118,110,113),(131,160,136,155),(132,159,137,154),(133,158,138,153),(134,157,139,152),(135,156,140,151)], [(1,85,30,73),(2,86,21,74),(3,87,22,75),(4,88,23,76),(5,89,24,77),(6,90,25,78),(7,81,26,79),(8,82,27,80),(9,83,28,71),(10,84,29,72),(11,93,153,105),(12,94,154,106),(13,95,155,107),(14,96,156,108),(15,97,157,109),(16,98,158,110),(17,99,159,101),(18,100,160,102),(19,91,151,103),(20,92,152,104),(31,56,43,68),(32,57,44,69),(33,58,45,70),(34,59,46,61),(35,60,47,62),(36,51,48,63),(37,52,49,64),(38,53,50,65),(39,54,41,66),(40,55,42,67),(111,143,123,131),(112,144,124,132),(113,145,125,133),(114,146,126,134),(115,147,127,135),(116,148,128,136),(117,149,129,137),(118,150,130,138),(119,141,121,139),(120,142,122,140)], [(1,16,30,158),(2,15,21,157),(3,14,22,156),(4,13,23,155),(5,12,24,154),(6,11,25,153),(7,20,26,152),(8,19,27,151),(9,18,28,160),(10,17,29,159),(31,142,43,140),(32,141,44,139),(33,150,45,138),(34,149,46,137),(35,148,47,136),(36,147,48,135),(37,146,49,134),(38,145,50,133),(39,144,41,132),(40,143,42,131),(51,115,63,127),(52,114,64,126),(53,113,65,125),(54,112,66,124),(55,111,67,123),(56,120,68,122),(57,119,69,121),(58,118,70,130),(59,117,61,129),(60,116,62,128),(71,100,83,102),(72,99,84,101),(73,98,85,110),(74,97,86,109),(75,96,87,108),(76,95,88,107),(77,94,89,106),(78,93,90,105),(79,92,81,104),(80,91,82,103)])

Matrix representation G ⊆ GL10(𝔽41)

7700000000
344000000000
0010000000
0001000000
0000100000
0000010000
00000040000
00000004000
00000000400
00000000040
,
40000000000
04000000000
0001000000
00400000000
0000010000
00004000000
00000004000
0000001000
00000000040
0000000010
,
40000000000
7100000000
0001000000
0010000000
00000400000
00004000000
0000000100
00000040000
00000000040
0000000010
,
40000000000
04000000000
0000010000
00004000000
0001000000
00400000000
00000000040
0000000010
00000004000
0000001000
,
40000000000
7100000000
00210030000
000213800000
000382000000
00300200000
000000002734
000000003414
000000273400
000000341400

G:=sub<GL(10,GF(41))| [7,34,0,0,0,0,0,0,0,0,7,40,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0],[40,7,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0],[40,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0],[40,7,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,21,0,0,3,0,0,0,0,0,0,0,21,38,0,0,0,0,0,0,0,0,38,20,0,0,0,0,0,0,0,3,0,0,20,0,0,0,0,0,0,0,0,0,0,0,0,27,34,0,0,0,0,0,0,0,0,34,14,0,0,0,0,0,0,27,34,0,0,0,0,0,0,0,0,34,14,0,0] >;

47 conjugacy classes

class 1 2A2B2C2D2E4A···4F4G···4M5A5B10A···10F10G10H10I10J20A···20H20I···20P
order1222224···44···45510···101010101020···2020···20
size11114204···420···20222···244444···48···8

47 irreducible representations

dim111111111111112222244444
type++++++++++++++++++++--
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2D5D10D10D10D102+ (1+4)2- (1+4)D46D10Q8.10D10D4.10D10
kernelC10.252- (1+4)C23.D10D10.12D4Dic5.5D4C20⋊Q8Dic5.Q8C4.Dic10D10⋊Q8C4⋊C4⋊D5C20.48D4C23.23D10Dic5⋊Q8D103Q8C5×C22⋊Q8C22⋊Q8C22⋊C4C4⋊C4C22×C4C2×Q8C10C10C2C2C2
# reps121111112111112462212444

In GAP, Magma, Sage, TeX

C_{10}._{25}2_-^{(1+4)}
% in TeX

G:=Group("C10.25ES-(2,2)");
// GroupNames label

G:=SmallGroup(320,1318);
// by ID

G=gap.SmallGroup(320,1318);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,219,1571,570,136,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^10=b^4=1,c^2=a^5,d^2=e^2=b^2,a*b=b*a,c*a*c^-1=e*a*e^-1=a^-1,a*d=d*a,c*b*c^-1=a^5*b^-1,b*d=d*b,e*b*e^-1=a^5*b,d*c*d^-1=a^5*c,c*e=e*c,e*d*e^-1=b^2*d>;
// generators/relations

׿
×
𝔽