Copied to
clipboard

?

G = C202M4(2)  order 320 = 26·5

2nd semidirect product of C20 and M4(2) acting via M4(2)/C2=C2×C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C202M4(2), C5⋊C83D4, C53(C86D4), C20⋊C86C2, (C2×D4).6F5, C2.28(D4×F5), (D4×C10).9C4, C10.28(C4×D4), C4⋊Dic5.14C4, C41(C22.F5), C23.12(C2×F5), C23.D5.7C4, C10.16(C8○D4), Dic5.80(C2×D4), (D4×Dic5).18C2, C2.16(D4.F5), C10.31(C2×M4(2)), C23.2F510C2, Dic5.59(C4○D4), C22.92(C22×F5), (C2×Dic5).353C23, (C4×Dic5).195C22, (C22×Dic5).186C22, (C4×C5⋊C8)⋊6C2, (C2×C4).81(C2×F5), (C2×C20).55(C2×C4), (C2×C5⋊C8).10C22, (C2×C22.F5)⋊5C2, C2.10(C2×C22.F5), (C2×C10).77(C22×C4), (C22×C10).25(C2×C4), (C2×Dic5).72(C2×C4), SmallGroup(320,1112)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C202M4(2)
C1C5C10Dic5C2×Dic5C2×C5⋊C8C2×C22.F5 — C202M4(2)
C5C2×C10 — C202M4(2)

Subgroups: 394 in 122 conjugacy classes, 48 normal (26 characteristic)
C1, C2 [×3], C2 [×2], C4 [×2], C4 [×5], C22, C22 [×6], C5, C8 [×5], C2×C4, C2×C4 [×8], D4 [×2], C23 [×2], C10 [×3], C10 [×2], C42, C22⋊C4 [×2], C4⋊C4, C2×C8 [×4], M4(2) [×4], C22×C4 [×2], C2×D4, Dic5 [×2], Dic5 [×3], C20 [×2], C2×C10, C2×C10 [×6], C4×C8, C22⋊C8 [×2], C4⋊C8, C4×D4, C2×M4(2) [×2], C5⋊C8 [×2], C5⋊C8 [×3], C2×Dic5 [×2], C2×Dic5 [×2], C2×Dic5 [×4], C2×C20, C5×D4 [×2], C22×C10 [×2], C86D4, C4×Dic5, C4⋊Dic5, C23.D5 [×2], C2×C5⋊C8 [×2], C2×C5⋊C8 [×2], C22.F5 [×4], C22×Dic5 [×2], D4×C10, C4×C5⋊C8, C20⋊C8, C23.2F5 [×2], D4×Dic5, C2×C22.F5 [×2], C202M4(2)

Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], D4 [×2], C23, M4(2) [×2], C22×C4, C2×D4, C4○D4, F5, C4×D4, C2×M4(2), C8○D4, C2×F5 [×3], C86D4, C22.F5 [×2], C22×F5, D4.F5, D4×F5, C2×C22.F5, C202M4(2)

Generators and relations
 G = < a,b,c | a20=b8=c2=1, bab-1=a3, cac=a11, cbc=b5 >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 70 157 100 130 110 41 39)(2 77 146 83 131 117 50 22)(3 64 155 86 132 104 59 25)(4 71 144 89 133 111 48 28)(5 78 153 92 134 118 57 31)(6 65 142 95 135 105 46 34)(7 72 151 98 136 112 55 37)(8 79 160 81 137 119 44 40)(9 66 149 84 138 106 53 23)(10 73 158 87 139 113 42 26)(11 80 147 90 140 120 51 29)(12 67 156 93 121 107 60 32)(13 74 145 96 122 114 49 35)(14 61 154 99 123 101 58 38)(15 68 143 82 124 108 47 21)(16 75 152 85 125 115 56 24)(17 62 141 88 126 102 45 27)(18 69 150 91 127 109 54 30)(19 76 159 94 128 116 43 33)(20 63 148 97 129 103 52 36)
(1 6)(2 17)(3 8)(4 19)(5 10)(7 12)(9 14)(11 16)(13 18)(15 20)(21 97)(22 88)(23 99)(24 90)(25 81)(26 92)(27 83)(28 94)(29 85)(30 96)(31 87)(32 98)(33 89)(34 100)(35 91)(36 82)(37 93)(38 84)(39 95)(40 86)(41 46)(42 57)(43 48)(44 59)(45 50)(47 52)(49 54)(51 56)(53 58)(55 60)(61 106)(62 117)(63 108)(64 119)(65 110)(66 101)(67 112)(68 103)(69 114)(70 105)(71 116)(72 107)(73 118)(74 109)(75 120)(76 111)(77 102)(78 113)(79 104)(80 115)(121 136)(122 127)(123 138)(124 129)(125 140)(126 131)(128 133)(130 135)(132 137)(134 139)(141 146)(142 157)(143 148)(144 159)(145 150)(147 152)(149 154)(151 156)(153 158)(155 160)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,70,157,100,130,110,41,39)(2,77,146,83,131,117,50,22)(3,64,155,86,132,104,59,25)(4,71,144,89,133,111,48,28)(5,78,153,92,134,118,57,31)(6,65,142,95,135,105,46,34)(7,72,151,98,136,112,55,37)(8,79,160,81,137,119,44,40)(9,66,149,84,138,106,53,23)(10,73,158,87,139,113,42,26)(11,80,147,90,140,120,51,29)(12,67,156,93,121,107,60,32)(13,74,145,96,122,114,49,35)(14,61,154,99,123,101,58,38)(15,68,143,82,124,108,47,21)(16,75,152,85,125,115,56,24)(17,62,141,88,126,102,45,27)(18,69,150,91,127,109,54,30)(19,76,159,94,128,116,43,33)(20,63,148,97,129,103,52,36), (1,6)(2,17)(3,8)(4,19)(5,10)(7,12)(9,14)(11,16)(13,18)(15,20)(21,97)(22,88)(23,99)(24,90)(25,81)(26,92)(27,83)(28,94)(29,85)(30,96)(31,87)(32,98)(33,89)(34,100)(35,91)(36,82)(37,93)(38,84)(39,95)(40,86)(41,46)(42,57)(43,48)(44,59)(45,50)(47,52)(49,54)(51,56)(53,58)(55,60)(61,106)(62,117)(63,108)(64,119)(65,110)(66,101)(67,112)(68,103)(69,114)(70,105)(71,116)(72,107)(73,118)(74,109)(75,120)(76,111)(77,102)(78,113)(79,104)(80,115)(121,136)(122,127)(123,138)(124,129)(125,140)(126,131)(128,133)(130,135)(132,137)(134,139)(141,146)(142,157)(143,148)(144,159)(145,150)(147,152)(149,154)(151,156)(153,158)(155,160)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,70,157,100,130,110,41,39)(2,77,146,83,131,117,50,22)(3,64,155,86,132,104,59,25)(4,71,144,89,133,111,48,28)(5,78,153,92,134,118,57,31)(6,65,142,95,135,105,46,34)(7,72,151,98,136,112,55,37)(8,79,160,81,137,119,44,40)(9,66,149,84,138,106,53,23)(10,73,158,87,139,113,42,26)(11,80,147,90,140,120,51,29)(12,67,156,93,121,107,60,32)(13,74,145,96,122,114,49,35)(14,61,154,99,123,101,58,38)(15,68,143,82,124,108,47,21)(16,75,152,85,125,115,56,24)(17,62,141,88,126,102,45,27)(18,69,150,91,127,109,54,30)(19,76,159,94,128,116,43,33)(20,63,148,97,129,103,52,36), (1,6)(2,17)(3,8)(4,19)(5,10)(7,12)(9,14)(11,16)(13,18)(15,20)(21,97)(22,88)(23,99)(24,90)(25,81)(26,92)(27,83)(28,94)(29,85)(30,96)(31,87)(32,98)(33,89)(34,100)(35,91)(36,82)(37,93)(38,84)(39,95)(40,86)(41,46)(42,57)(43,48)(44,59)(45,50)(47,52)(49,54)(51,56)(53,58)(55,60)(61,106)(62,117)(63,108)(64,119)(65,110)(66,101)(67,112)(68,103)(69,114)(70,105)(71,116)(72,107)(73,118)(74,109)(75,120)(76,111)(77,102)(78,113)(79,104)(80,115)(121,136)(122,127)(123,138)(124,129)(125,140)(126,131)(128,133)(130,135)(132,137)(134,139)(141,146)(142,157)(143,148)(144,159)(145,150)(147,152)(149,154)(151,156)(153,158)(155,160) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,70,157,100,130,110,41,39),(2,77,146,83,131,117,50,22),(3,64,155,86,132,104,59,25),(4,71,144,89,133,111,48,28),(5,78,153,92,134,118,57,31),(6,65,142,95,135,105,46,34),(7,72,151,98,136,112,55,37),(8,79,160,81,137,119,44,40),(9,66,149,84,138,106,53,23),(10,73,158,87,139,113,42,26),(11,80,147,90,140,120,51,29),(12,67,156,93,121,107,60,32),(13,74,145,96,122,114,49,35),(14,61,154,99,123,101,58,38),(15,68,143,82,124,108,47,21),(16,75,152,85,125,115,56,24),(17,62,141,88,126,102,45,27),(18,69,150,91,127,109,54,30),(19,76,159,94,128,116,43,33),(20,63,148,97,129,103,52,36)], [(1,6),(2,17),(3,8),(4,19),(5,10),(7,12),(9,14),(11,16),(13,18),(15,20),(21,97),(22,88),(23,99),(24,90),(25,81),(26,92),(27,83),(28,94),(29,85),(30,96),(31,87),(32,98),(33,89),(34,100),(35,91),(36,82),(37,93),(38,84),(39,95),(40,86),(41,46),(42,57),(43,48),(44,59),(45,50),(47,52),(49,54),(51,56),(53,58),(55,60),(61,106),(62,117),(63,108),(64,119),(65,110),(66,101),(67,112),(68,103),(69,114),(70,105),(71,116),(72,107),(73,118),(74,109),(75,120),(76,111),(77,102),(78,113),(79,104),(80,115),(121,136),(122,127),(123,138),(124,129),(125,140),(126,131),(128,133),(130,135),(132,137),(134,139),(141,146),(142,157),(143,148),(144,159),(145,150),(147,152),(149,154),(151,156),(153,158),(155,160)])

Matrix representation G ⊆ GL8(𝔽41)

139000000
140000000
00100000
00010000
00000001
000040001
000004001
000000401
,
402000000
01000000
0034190000
002570000
0000371442
00000162939
0000251222
00003916427
,
402000000
01000000
00100000
0018400000
000040000
000004000
000000400
000000040

G:=sub<GL(8,GF(41))| [1,1,0,0,0,0,0,0,39,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,1,1,1,1],[40,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,34,25,0,0,0,0,0,0,19,7,0,0,0,0,0,0,0,0,37,0,25,39,0,0,0,0,14,16,12,16,0,0,0,0,4,29,2,4,0,0,0,0,2,39,2,27],[40,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40] >;

38 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I4J 5 8A···8H8I8J8K8L10A10B10C10D10E10F10G20A20B
order122222444444444458···88888101010101010102020
size11114422555510102020410···1020202020444888888

38 irreducible representations

dim1111111112222444488
type++++++++++--+
imageC1C2C2C2C2C2C4C4C4D4C4○D4M4(2)C8○D4F5C2×F5C2×F5C22.F5D4.F5D4×F5
kernelC202M4(2)C4×C5⋊C8C20⋊C8C23.2F5D4×Dic5C2×C22.F5C4⋊Dic5C23.D5D4×C10C5⋊C8Dic5C20C10C2×D4C2×C4C23C4C2C2
# reps1112122422244112411

In GAP, Magma, Sage, TeX

C_{20}\rtimes_2M_{4(2)}
% in TeX

G:=Group("C20:2M4(2)");
// GroupNames label

G:=SmallGroup(320,1112);
// by ID

G=gap.SmallGroup(320,1112);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,477,758,219,136,6278,1595]);
// Polycyclic

G:=Group<a,b,c|a^20=b^8=c^2=1,b*a*b^-1=a^3,c*a*c=a^11,c*b*c=b^5>;
// generators/relations

׿
×
𝔽