Copied to
clipboard

?

G = C2×D20.2C4order 320 = 26·5

Direct product of C2 and D20.2C4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D20.2C4, C20.69C24, C40.46C23, M4(2)⋊25D10, C104(C8○D4), C4○D20.8C4, (C2×D20).28C4, D20.42(C2×C4), (C2×C8).279D10, (C8×D5)⋊22C22, C23.30(C4×D5), C4.68(C23×D5), C8.43(C22×D5), C8⋊D518C22, (C2×M4(2))⋊17D5, (C10×M4(2))⋊9C2, C10.53(C23×C4), C52C8.42C23, (C4×D5).71C23, (C2×C20).882C23, C20.151(C22×C4), (C2×C40).238C22, Dic10.44(C2×C4), (C2×Dic10).29C4, C4○D20.49C22, D10.22(C22×C4), (C22×C4).374D10, (C5×M4(2))⋊25C22, Dic5.21(C22×C4), (C22×C20).264C22, C55(C2×C8○D4), (D5×C2×C8)⋊29C2, C4.123(C2×C4×D5), C22.8(C2×C4×D5), (C2×C4).87(C4×D5), C5⋊D4.7(C2×C4), (C2×C8⋊D5)⋊27C2, C2.33(D5×C22×C4), (C4×D5).60(C2×C4), (C2×C5⋊D4).23C4, (C2×C20).304(C2×C4), (C2×C52C8)⋊33C22, (C22×C52C8)⋊10C2, (C2×C4○D20).21C2, (C2×C4×D5).386C22, (C22×D5).83(C2×C4), (C2×C4).825(C22×D5), (C22×C10).146(C2×C4), (C2×C10).126(C22×C4), (C2×Dic5).117(C2×C4), SmallGroup(320,1416)

Series: Derived Chief Lower central Upper central

C1C10 — C2×D20.2C4
C1C5C10C20C4×D5C2×C4×D5C2×C4○D20 — C2×D20.2C4
C5C10 — C2×D20.2C4

Subgroups: 718 in 266 conjugacy classes, 151 normal (27 characteristic)
C1, C2, C2 [×2], C2 [×6], C4 [×2], C4 [×2], C4 [×4], C22, C22 [×2], C22 [×10], C5, C8 [×4], C8 [×4], C2×C4 [×2], C2×C4 [×4], C2×C4 [×10], D4 [×12], Q8 [×4], C23, C23 [×2], D5 [×4], C10, C10 [×2], C10 [×2], C2×C8 [×2], C2×C8 [×14], M4(2) [×4], M4(2) [×8], C22×C4, C22×C4 [×2], C2×D4 [×3], C2×Q8, C4○D4 [×8], Dic5 [×4], C20 [×2], C20 [×2], D10 [×4], D10 [×4], C2×C10, C2×C10 [×2], C2×C10 [×2], C22×C8 [×3], C2×M4(2), C2×M4(2) [×2], C8○D4 [×8], C2×C4○D4, C52C8 [×4], C40 [×4], Dic10 [×4], C4×D5 [×8], D20 [×4], C2×Dic5 [×2], C5⋊D4 [×8], C2×C20 [×2], C2×C20 [×4], C22×D5 [×2], C22×C10, C2×C8○D4, C8×D5 [×8], C8⋊D5 [×8], C2×C52C8 [×2], C2×C52C8 [×4], C2×C40 [×2], C5×M4(2) [×4], C2×Dic10, C2×C4×D5 [×2], C2×D20, C4○D20 [×8], C2×C5⋊D4 [×2], C22×C20, D5×C2×C8 [×2], C2×C8⋊D5 [×2], D20.2C4 [×8], C22×C52C8, C10×M4(2), C2×C4○D20, C2×D20.2C4

Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], C23 [×15], D5, C22×C4 [×14], C24, D10 [×7], C8○D4 [×2], C23×C4, C4×D5 [×4], C22×D5 [×7], C2×C8○D4, C2×C4×D5 [×6], C23×D5, D20.2C4 [×2], D5×C22×C4, C2×D20.2C4

Generators and relations
 G = < a,b,c,d | a2=b20=c2=1, d4=b10, ab=ba, ac=ca, ad=da, cbc=b-1, dbd-1=b11, dcd-1=b10c >

Smallest permutation representation
On 160 points
Generators in S160
(1 86)(2 87)(3 88)(4 89)(5 90)(6 91)(7 92)(8 93)(9 94)(10 95)(11 96)(12 97)(13 98)(14 99)(15 100)(16 81)(17 82)(18 83)(19 84)(20 85)(21 159)(22 160)(23 141)(24 142)(25 143)(26 144)(27 145)(28 146)(29 147)(30 148)(31 149)(32 150)(33 151)(34 152)(35 153)(36 154)(37 155)(38 156)(39 157)(40 158)(41 117)(42 118)(43 119)(44 120)(45 101)(46 102)(47 103)(48 104)(49 105)(50 106)(51 107)(52 108)(53 109)(54 110)(55 111)(56 112)(57 113)(58 114)(59 115)(60 116)(61 134)(62 135)(63 136)(64 137)(65 138)(66 139)(67 140)(68 121)(69 122)(70 123)(71 124)(72 125)(73 126)(74 127)(75 128)(76 129)(77 130)(78 131)(79 132)(80 133)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 90)(2 89)(3 88)(4 87)(5 86)(6 85)(7 84)(8 83)(9 82)(10 81)(11 100)(12 99)(13 98)(14 97)(15 96)(16 95)(17 94)(18 93)(19 92)(20 91)(21 143)(22 142)(23 141)(24 160)(25 159)(26 158)(27 157)(28 156)(29 155)(30 154)(31 153)(32 152)(33 151)(34 150)(35 149)(36 148)(37 147)(38 146)(39 145)(40 144)(41 103)(42 102)(43 101)(44 120)(45 119)(46 118)(47 117)(48 116)(49 115)(50 114)(51 113)(52 112)(53 111)(54 110)(55 109)(56 108)(57 107)(58 106)(59 105)(60 104)(61 124)(62 123)(63 122)(64 121)(65 140)(66 139)(67 138)(68 137)(69 136)(70 135)(71 134)(72 133)(73 132)(74 131)(75 130)(76 129)(77 128)(78 127)(79 126)(80 125)
(1 57 137 154 11 47 127 144)(2 48 138 145 12 58 128 155)(3 59 139 156 13 49 129 146)(4 50 140 147 14 60 130 157)(5 41 121 158 15 51 131 148)(6 52 122 149 16 42 132 159)(7 43 123 160 17 53 133 150)(8 54 124 151 18 44 134 141)(9 45 125 142 19 55 135 152)(10 56 126 153 20 46 136 143)(21 91 108 69 31 81 118 79)(22 82 109 80 32 92 119 70)(23 93 110 71 33 83 120 61)(24 84 111 62 34 94 101 72)(25 95 112 73 35 85 102 63)(26 86 113 64 36 96 103 74)(27 97 114 75 37 87 104 65)(28 88 115 66 38 98 105 76)(29 99 116 77 39 89 106 67)(30 90 117 68 40 100 107 78)

G:=sub<Sym(160)| (1,86)(2,87)(3,88)(4,89)(5,90)(6,91)(7,92)(8,93)(9,94)(10,95)(11,96)(12,97)(13,98)(14,99)(15,100)(16,81)(17,82)(18,83)(19,84)(20,85)(21,159)(22,160)(23,141)(24,142)(25,143)(26,144)(27,145)(28,146)(29,147)(30,148)(31,149)(32,150)(33,151)(34,152)(35,153)(36,154)(37,155)(38,156)(39,157)(40,158)(41,117)(42,118)(43,119)(44,120)(45,101)(46,102)(47,103)(48,104)(49,105)(50,106)(51,107)(52,108)(53,109)(54,110)(55,111)(56,112)(57,113)(58,114)(59,115)(60,116)(61,134)(62,135)(63,136)(64,137)(65,138)(66,139)(67,140)(68,121)(69,122)(70,123)(71,124)(72,125)(73,126)(74,127)(75,128)(76,129)(77,130)(78,131)(79,132)(80,133), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,90)(2,89)(3,88)(4,87)(5,86)(6,85)(7,84)(8,83)(9,82)(10,81)(11,100)(12,99)(13,98)(14,97)(15,96)(16,95)(17,94)(18,93)(19,92)(20,91)(21,143)(22,142)(23,141)(24,160)(25,159)(26,158)(27,157)(28,156)(29,155)(30,154)(31,153)(32,152)(33,151)(34,150)(35,149)(36,148)(37,147)(38,146)(39,145)(40,144)(41,103)(42,102)(43,101)(44,120)(45,119)(46,118)(47,117)(48,116)(49,115)(50,114)(51,113)(52,112)(53,111)(54,110)(55,109)(56,108)(57,107)(58,106)(59,105)(60,104)(61,124)(62,123)(63,122)(64,121)(65,140)(66,139)(67,138)(68,137)(69,136)(70,135)(71,134)(72,133)(73,132)(74,131)(75,130)(76,129)(77,128)(78,127)(79,126)(80,125), (1,57,137,154,11,47,127,144)(2,48,138,145,12,58,128,155)(3,59,139,156,13,49,129,146)(4,50,140,147,14,60,130,157)(5,41,121,158,15,51,131,148)(6,52,122,149,16,42,132,159)(7,43,123,160,17,53,133,150)(8,54,124,151,18,44,134,141)(9,45,125,142,19,55,135,152)(10,56,126,153,20,46,136,143)(21,91,108,69,31,81,118,79)(22,82,109,80,32,92,119,70)(23,93,110,71,33,83,120,61)(24,84,111,62,34,94,101,72)(25,95,112,73,35,85,102,63)(26,86,113,64,36,96,103,74)(27,97,114,75,37,87,104,65)(28,88,115,66,38,98,105,76)(29,99,116,77,39,89,106,67)(30,90,117,68,40,100,107,78)>;

G:=Group( (1,86)(2,87)(3,88)(4,89)(5,90)(6,91)(7,92)(8,93)(9,94)(10,95)(11,96)(12,97)(13,98)(14,99)(15,100)(16,81)(17,82)(18,83)(19,84)(20,85)(21,159)(22,160)(23,141)(24,142)(25,143)(26,144)(27,145)(28,146)(29,147)(30,148)(31,149)(32,150)(33,151)(34,152)(35,153)(36,154)(37,155)(38,156)(39,157)(40,158)(41,117)(42,118)(43,119)(44,120)(45,101)(46,102)(47,103)(48,104)(49,105)(50,106)(51,107)(52,108)(53,109)(54,110)(55,111)(56,112)(57,113)(58,114)(59,115)(60,116)(61,134)(62,135)(63,136)(64,137)(65,138)(66,139)(67,140)(68,121)(69,122)(70,123)(71,124)(72,125)(73,126)(74,127)(75,128)(76,129)(77,130)(78,131)(79,132)(80,133), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,90)(2,89)(3,88)(4,87)(5,86)(6,85)(7,84)(8,83)(9,82)(10,81)(11,100)(12,99)(13,98)(14,97)(15,96)(16,95)(17,94)(18,93)(19,92)(20,91)(21,143)(22,142)(23,141)(24,160)(25,159)(26,158)(27,157)(28,156)(29,155)(30,154)(31,153)(32,152)(33,151)(34,150)(35,149)(36,148)(37,147)(38,146)(39,145)(40,144)(41,103)(42,102)(43,101)(44,120)(45,119)(46,118)(47,117)(48,116)(49,115)(50,114)(51,113)(52,112)(53,111)(54,110)(55,109)(56,108)(57,107)(58,106)(59,105)(60,104)(61,124)(62,123)(63,122)(64,121)(65,140)(66,139)(67,138)(68,137)(69,136)(70,135)(71,134)(72,133)(73,132)(74,131)(75,130)(76,129)(77,128)(78,127)(79,126)(80,125), (1,57,137,154,11,47,127,144)(2,48,138,145,12,58,128,155)(3,59,139,156,13,49,129,146)(4,50,140,147,14,60,130,157)(5,41,121,158,15,51,131,148)(6,52,122,149,16,42,132,159)(7,43,123,160,17,53,133,150)(8,54,124,151,18,44,134,141)(9,45,125,142,19,55,135,152)(10,56,126,153,20,46,136,143)(21,91,108,69,31,81,118,79)(22,82,109,80,32,92,119,70)(23,93,110,71,33,83,120,61)(24,84,111,62,34,94,101,72)(25,95,112,73,35,85,102,63)(26,86,113,64,36,96,103,74)(27,97,114,75,37,87,104,65)(28,88,115,66,38,98,105,76)(29,99,116,77,39,89,106,67)(30,90,117,68,40,100,107,78) );

G=PermutationGroup([(1,86),(2,87),(3,88),(4,89),(5,90),(6,91),(7,92),(8,93),(9,94),(10,95),(11,96),(12,97),(13,98),(14,99),(15,100),(16,81),(17,82),(18,83),(19,84),(20,85),(21,159),(22,160),(23,141),(24,142),(25,143),(26,144),(27,145),(28,146),(29,147),(30,148),(31,149),(32,150),(33,151),(34,152),(35,153),(36,154),(37,155),(38,156),(39,157),(40,158),(41,117),(42,118),(43,119),(44,120),(45,101),(46,102),(47,103),(48,104),(49,105),(50,106),(51,107),(52,108),(53,109),(54,110),(55,111),(56,112),(57,113),(58,114),(59,115),(60,116),(61,134),(62,135),(63,136),(64,137),(65,138),(66,139),(67,140),(68,121),(69,122),(70,123),(71,124),(72,125),(73,126),(74,127),(75,128),(76,129),(77,130),(78,131),(79,132),(80,133)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,90),(2,89),(3,88),(4,87),(5,86),(6,85),(7,84),(8,83),(9,82),(10,81),(11,100),(12,99),(13,98),(14,97),(15,96),(16,95),(17,94),(18,93),(19,92),(20,91),(21,143),(22,142),(23,141),(24,160),(25,159),(26,158),(27,157),(28,156),(29,155),(30,154),(31,153),(32,152),(33,151),(34,150),(35,149),(36,148),(37,147),(38,146),(39,145),(40,144),(41,103),(42,102),(43,101),(44,120),(45,119),(46,118),(47,117),(48,116),(49,115),(50,114),(51,113),(52,112),(53,111),(54,110),(55,109),(56,108),(57,107),(58,106),(59,105),(60,104),(61,124),(62,123),(63,122),(64,121),(65,140),(66,139),(67,138),(68,137),(69,136),(70,135),(71,134),(72,133),(73,132),(74,131),(75,130),(76,129),(77,128),(78,127),(79,126),(80,125)], [(1,57,137,154,11,47,127,144),(2,48,138,145,12,58,128,155),(3,59,139,156,13,49,129,146),(4,50,140,147,14,60,130,157),(5,41,121,158,15,51,131,148),(6,52,122,149,16,42,132,159),(7,43,123,160,17,53,133,150),(8,54,124,151,18,44,134,141),(9,45,125,142,19,55,135,152),(10,56,126,153,20,46,136,143),(21,91,108,69,31,81,118,79),(22,82,109,80,32,92,119,70),(23,93,110,71,33,83,120,61),(24,84,111,62,34,94,101,72),(25,95,112,73,35,85,102,63),(26,86,113,64,36,96,103,74),(27,97,114,75,37,87,104,65),(28,88,115,66,38,98,105,76),(29,99,116,77,39,89,106,67),(30,90,117,68,40,100,107,78)])

Matrix representation G ⊆ GL4(𝔽41) generated by

40000
04000
00400
00040
,
344000
1000
00320
00239
,
7100
343400
00401
0001
,
32000
03200
001427
002827
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40],[34,1,0,0,40,0,0,0,0,0,32,23,0,0,0,9],[7,34,0,0,1,34,0,0,0,0,40,0,0,0,1,1],[32,0,0,0,0,32,0,0,0,0,14,28,0,0,27,27] >;

80 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J5A5B8A···8H8I···8P8Q8R8S8T10A···10F10G10H10I10J20A···20H20I20J20K20L40A···40P
order12222222224444444444558···88···8888810···101010101020···202020202040···40
size1111221010101011112210101010222···25···5101010102···244442···244444···4

80 irreducible representations

dim1111111111122222224
type+++++++++++
imageC1C2C2C2C2C2C2C4C4C4C4D5D10D10D10C8○D4C4×D5C4×D5D20.2C4
kernelC2×D20.2C4D5×C2×C8C2×C8⋊D5D20.2C4C22×C52C8C10×M4(2)C2×C4○D20C2×Dic10C2×D20C4○D20C2×C5⋊D4C2×M4(2)C2×C8M4(2)C22×C4C10C2×C4C23C2
# reps12281112284248281248

In GAP, Magma, Sage, TeX

C_2\times D_{20}._2C_4
% in TeX

G:=Group("C2xD20.2C4");
// GroupNames label

G:=SmallGroup(320,1416);
// by ID

G=gap.SmallGroup(320,1416);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,758,297,80,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^20=c^2=1,d^4=b^10,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d^-1=b^11,d*c*d^-1=b^10*c>;
// generators/relations

׿
×
𝔽