Copied to
clipboard

?

G = C2×D208C4order 320 = 26·5

Direct product of C2 and D208C4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D208C4, C104(C4×D4), C4⋊C452D10, (C2×D20)⋊29C4, D2032(C2×C4), C206(C22×C4), (C2×Dic5)⋊24D4, Dic510(C2×D4), D104(C22×C4), C10.34(C23×C4), (C2×C10).47C24, C10.41(C22×D4), C22.131(D4×D5), (C2×C20).579C23, (C4×Dic5)⋊64C22, (C22×D20).17C2, (C22×C4).317D10, D10⋊C459C22, C22.23(C23×D5), (C2×D20).260C22, C23.326(C22×D5), (C22×C10).396C23, (C22×C20).215C22, C22.34(Q82D5), (C2×Dic5).372C23, (C22×D5).164C23, (C23×D5).110C22, (C22×Dic5).234C22, C54(C2×C4×D4), C42(C2×C4×D5), C2.4(C2×D4×D5), (C2×C4)⋊9(C4×D5), (C10×C4⋊C4)⋊9C2, (C2×C4⋊C4)⋊26D5, (C2×C4×Dic5)⋊5C2, (C2×C20)⋊21(C2×C4), (D5×C22×C4)⋊19C2, (C2×C4×D5)⋊67C22, (C5×C4⋊C4)⋊44C22, C22.73(C2×C4×D5), C2.15(D5×C22×C4), C2.2(C2×Q82D5), C10.108(C2×C4○D4), (C2×C10).387(C2×D4), (C22×D5)⋊16(C2×C4), (C2×D10⋊C4)⋊32C2, (C2×C4).266(C22×D5), (C2×C10).196(C4○D4), (C2×C10).253(C22×C4), SmallGroup(320,1175)

Series: Derived Chief Lower central Upper central

C1C10 — C2×D208C4
C1C5C10C2×C10C22×D5C23×D5C22×D20 — C2×D208C4
C5C10 — C2×D208C4

Subgroups: 1518 in 426 conjugacy classes, 175 normal (21 characteristic)
C1, C2 [×3], C2 [×4], C2 [×8], C4 [×4], C4 [×10], C22, C22 [×6], C22 [×32], C5, C2×C4 [×10], C2×C4 [×30], D4 [×16], C23, C23 [×20], D5 [×8], C10 [×3], C10 [×4], C42 [×4], C22⋊C4 [×8], C4⋊C4 [×4], C22×C4, C22×C4 [×2], C22×C4 [×18], C2×D4 [×12], C24 [×2], Dic5 [×4], Dic5 [×2], C20 [×4], C20 [×4], D10 [×8], D10 [×24], C2×C10, C2×C10 [×6], C2×C42, C2×C22⋊C4 [×2], C2×C4⋊C4, C4×D4 [×8], C23×C4 [×2], C22×D4, C4×D5 [×16], D20 [×16], C2×Dic5 [×8], C2×Dic5 [×2], C2×C20 [×10], C2×C20 [×4], C22×D5 [×12], C22×D5 [×8], C22×C10, C2×C4×D4, C4×Dic5 [×4], D10⋊C4 [×8], C5×C4⋊C4 [×4], C2×C4×D5 [×8], C2×C4×D5 [×8], C2×D20 [×12], C22×Dic5 [×2], C22×C20, C22×C20 [×2], C23×D5 [×2], D208C4 [×8], C2×C4×Dic5, C2×D10⋊C4 [×2], C10×C4⋊C4, D5×C22×C4 [×2], C22×D20, C2×D208C4

Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], D4 [×4], C23 [×15], D5, C22×C4 [×14], C2×D4 [×6], C4○D4 [×2], C24, D10 [×7], C4×D4 [×4], C23×C4, C22×D4, C2×C4○D4, C4×D5 [×4], C22×D5 [×7], C2×C4×D4, C2×C4×D5 [×6], D4×D5 [×2], Q82D5 [×2], C23×D5, D208C4 [×4], D5×C22×C4, C2×D4×D5, C2×Q82D5, C2×D208C4

Generators and relations
 G = < a,b,c,d | a2=b20=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b-1, dbd-1=b11, dcd-1=b10c >

Smallest permutation representation
On 160 points
Generators in S160
(1 137)(2 138)(3 139)(4 140)(5 121)(6 122)(7 123)(8 124)(9 125)(10 126)(11 127)(12 128)(13 129)(14 130)(15 131)(16 132)(17 133)(18 134)(19 135)(20 136)(21 58)(22 59)(23 60)(24 41)(25 42)(26 43)(27 44)(28 45)(29 46)(30 47)(31 48)(32 49)(33 50)(34 51)(35 52)(36 53)(37 54)(38 55)(39 56)(40 57)(61 152)(62 153)(63 154)(64 155)(65 156)(66 157)(67 158)(68 159)(69 160)(70 141)(71 142)(72 143)(73 144)(74 145)(75 146)(76 147)(77 148)(78 149)(79 150)(80 151)(81 114)(82 115)(83 116)(84 117)(85 118)(86 119)(87 120)(88 101)(89 102)(90 103)(91 104)(92 105)(93 106)(94 107)(95 108)(96 109)(97 110)(98 111)(99 112)(100 113)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 20)(17 19)(21 39)(22 38)(23 37)(24 36)(25 35)(26 34)(27 33)(28 32)(29 31)(41 53)(42 52)(43 51)(44 50)(45 49)(46 48)(54 60)(55 59)(56 58)(61 73)(62 72)(63 71)(64 70)(65 69)(66 68)(74 80)(75 79)(76 78)(81 95)(82 94)(83 93)(84 92)(85 91)(86 90)(87 89)(96 100)(97 99)(102 120)(103 119)(104 118)(105 117)(106 116)(107 115)(108 114)(109 113)(110 112)(121 127)(122 126)(123 125)(128 140)(129 139)(130 138)(131 137)(132 136)(133 135)(141 155)(142 154)(143 153)(144 152)(145 151)(146 150)(147 149)(156 160)(157 159)
(1 86 151 45)(2 97 152 56)(3 88 153 47)(4 99 154 58)(5 90 155 49)(6 81 156 60)(7 92 157 51)(8 83 158 42)(9 94 159 53)(10 85 160 44)(11 96 141 55)(12 87 142 46)(13 98 143 57)(14 89 144 48)(15 100 145 59)(16 91 146 50)(17 82 147 41)(18 93 148 52)(19 84 149 43)(20 95 150 54)(21 140 112 63)(22 131 113 74)(23 122 114 65)(24 133 115 76)(25 124 116 67)(26 135 117 78)(27 126 118 69)(28 137 119 80)(29 128 120 71)(30 139 101 62)(31 130 102 73)(32 121 103 64)(33 132 104 75)(34 123 105 66)(35 134 106 77)(36 125 107 68)(37 136 108 79)(38 127 109 70)(39 138 110 61)(40 129 111 72)

G:=sub<Sym(160)| (1,137)(2,138)(3,139)(4,140)(5,121)(6,122)(7,123)(8,124)(9,125)(10,126)(11,127)(12,128)(13,129)(14,130)(15,131)(16,132)(17,133)(18,134)(19,135)(20,136)(21,58)(22,59)(23,60)(24,41)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,49)(33,50)(34,51)(35,52)(36,53)(37,54)(38,55)(39,56)(40,57)(61,152)(62,153)(63,154)(64,155)(65,156)(66,157)(67,158)(68,159)(69,160)(70,141)(71,142)(72,143)(73,144)(74,145)(75,146)(76,147)(77,148)(78,149)(79,150)(80,151)(81,114)(82,115)(83,116)(84,117)(85,118)(86,119)(87,120)(88,101)(89,102)(90,103)(91,104)(92,105)(93,106)(94,107)(95,108)(96,109)(97,110)(98,111)(99,112)(100,113), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,39)(22,38)(23,37)(24,36)(25,35)(26,34)(27,33)(28,32)(29,31)(41,53)(42,52)(43,51)(44,50)(45,49)(46,48)(54,60)(55,59)(56,58)(61,73)(62,72)(63,71)(64,70)(65,69)(66,68)(74,80)(75,79)(76,78)(81,95)(82,94)(83,93)(84,92)(85,91)(86,90)(87,89)(96,100)(97,99)(102,120)(103,119)(104,118)(105,117)(106,116)(107,115)(108,114)(109,113)(110,112)(121,127)(122,126)(123,125)(128,140)(129,139)(130,138)(131,137)(132,136)(133,135)(141,155)(142,154)(143,153)(144,152)(145,151)(146,150)(147,149)(156,160)(157,159), (1,86,151,45)(2,97,152,56)(3,88,153,47)(4,99,154,58)(5,90,155,49)(6,81,156,60)(7,92,157,51)(8,83,158,42)(9,94,159,53)(10,85,160,44)(11,96,141,55)(12,87,142,46)(13,98,143,57)(14,89,144,48)(15,100,145,59)(16,91,146,50)(17,82,147,41)(18,93,148,52)(19,84,149,43)(20,95,150,54)(21,140,112,63)(22,131,113,74)(23,122,114,65)(24,133,115,76)(25,124,116,67)(26,135,117,78)(27,126,118,69)(28,137,119,80)(29,128,120,71)(30,139,101,62)(31,130,102,73)(32,121,103,64)(33,132,104,75)(34,123,105,66)(35,134,106,77)(36,125,107,68)(37,136,108,79)(38,127,109,70)(39,138,110,61)(40,129,111,72)>;

G:=Group( (1,137)(2,138)(3,139)(4,140)(5,121)(6,122)(7,123)(8,124)(9,125)(10,126)(11,127)(12,128)(13,129)(14,130)(15,131)(16,132)(17,133)(18,134)(19,135)(20,136)(21,58)(22,59)(23,60)(24,41)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,49)(33,50)(34,51)(35,52)(36,53)(37,54)(38,55)(39,56)(40,57)(61,152)(62,153)(63,154)(64,155)(65,156)(66,157)(67,158)(68,159)(69,160)(70,141)(71,142)(72,143)(73,144)(74,145)(75,146)(76,147)(77,148)(78,149)(79,150)(80,151)(81,114)(82,115)(83,116)(84,117)(85,118)(86,119)(87,120)(88,101)(89,102)(90,103)(91,104)(92,105)(93,106)(94,107)(95,108)(96,109)(97,110)(98,111)(99,112)(100,113), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,39)(22,38)(23,37)(24,36)(25,35)(26,34)(27,33)(28,32)(29,31)(41,53)(42,52)(43,51)(44,50)(45,49)(46,48)(54,60)(55,59)(56,58)(61,73)(62,72)(63,71)(64,70)(65,69)(66,68)(74,80)(75,79)(76,78)(81,95)(82,94)(83,93)(84,92)(85,91)(86,90)(87,89)(96,100)(97,99)(102,120)(103,119)(104,118)(105,117)(106,116)(107,115)(108,114)(109,113)(110,112)(121,127)(122,126)(123,125)(128,140)(129,139)(130,138)(131,137)(132,136)(133,135)(141,155)(142,154)(143,153)(144,152)(145,151)(146,150)(147,149)(156,160)(157,159), (1,86,151,45)(2,97,152,56)(3,88,153,47)(4,99,154,58)(5,90,155,49)(6,81,156,60)(7,92,157,51)(8,83,158,42)(9,94,159,53)(10,85,160,44)(11,96,141,55)(12,87,142,46)(13,98,143,57)(14,89,144,48)(15,100,145,59)(16,91,146,50)(17,82,147,41)(18,93,148,52)(19,84,149,43)(20,95,150,54)(21,140,112,63)(22,131,113,74)(23,122,114,65)(24,133,115,76)(25,124,116,67)(26,135,117,78)(27,126,118,69)(28,137,119,80)(29,128,120,71)(30,139,101,62)(31,130,102,73)(32,121,103,64)(33,132,104,75)(34,123,105,66)(35,134,106,77)(36,125,107,68)(37,136,108,79)(38,127,109,70)(39,138,110,61)(40,129,111,72) );

G=PermutationGroup([(1,137),(2,138),(3,139),(4,140),(5,121),(6,122),(7,123),(8,124),(9,125),(10,126),(11,127),(12,128),(13,129),(14,130),(15,131),(16,132),(17,133),(18,134),(19,135),(20,136),(21,58),(22,59),(23,60),(24,41),(25,42),(26,43),(27,44),(28,45),(29,46),(30,47),(31,48),(32,49),(33,50),(34,51),(35,52),(36,53),(37,54),(38,55),(39,56),(40,57),(61,152),(62,153),(63,154),(64,155),(65,156),(66,157),(67,158),(68,159),(69,160),(70,141),(71,142),(72,143),(73,144),(74,145),(75,146),(76,147),(77,148),(78,149),(79,150),(80,151),(81,114),(82,115),(83,116),(84,117),(85,118),(86,119),(87,120),(88,101),(89,102),(90,103),(91,104),(92,105),(93,106),(94,107),(95,108),(96,109),(97,110),(98,111),(99,112),(100,113)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,20),(17,19),(21,39),(22,38),(23,37),(24,36),(25,35),(26,34),(27,33),(28,32),(29,31),(41,53),(42,52),(43,51),(44,50),(45,49),(46,48),(54,60),(55,59),(56,58),(61,73),(62,72),(63,71),(64,70),(65,69),(66,68),(74,80),(75,79),(76,78),(81,95),(82,94),(83,93),(84,92),(85,91),(86,90),(87,89),(96,100),(97,99),(102,120),(103,119),(104,118),(105,117),(106,116),(107,115),(108,114),(109,113),(110,112),(121,127),(122,126),(123,125),(128,140),(129,139),(130,138),(131,137),(132,136),(133,135),(141,155),(142,154),(143,153),(144,152),(145,151),(146,150),(147,149),(156,160),(157,159)], [(1,86,151,45),(2,97,152,56),(3,88,153,47),(4,99,154,58),(5,90,155,49),(6,81,156,60),(7,92,157,51),(8,83,158,42),(9,94,159,53),(10,85,160,44),(11,96,141,55),(12,87,142,46),(13,98,143,57),(14,89,144,48),(15,100,145,59),(16,91,146,50),(17,82,147,41),(18,93,148,52),(19,84,149,43),(20,95,150,54),(21,140,112,63),(22,131,113,74),(23,122,114,65),(24,133,115,76),(25,124,116,67),(26,135,117,78),(27,126,118,69),(28,137,119,80),(29,128,120,71),(30,139,101,62),(31,130,102,73),(32,121,103,64),(33,132,104,75),(34,123,105,66),(35,134,106,77),(36,125,107,68),(37,136,108,79),(38,127,109,70),(39,138,110,61),(40,129,111,72)])

Matrix representation G ⊆ GL5(𝔽41)

400000
040000
004000
00010
00001
,
10000
0344000
01000
00009
00090
,
400000
0344000
07700
000400
00001
,
10000
032000
003200
000040
00010

G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,34,1,0,0,0,40,0,0,0,0,0,0,0,9,0,0,0,9,0],[40,0,0,0,0,0,34,7,0,0,0,40,7,0,0,0,0,0,40,0,0,0,0,0,1],[1,0,0,0,0,0,32,0,0,0,0,0,32,0,0,0,0,0,0,1,0,0,0,40,0] >;

80 conjugacy classes

class 1 2A···2G2H···2O4A···4L4M···4T4U4V4W4X5A5B10A···10N20A···20X
order12···22···24···44···444445510···1020···20
size11···110···102···25···510101010222···24···4

80 irreducible representations

dim1111111122222244
type+++++++++++++
imageC1C2C2C2C2C2C2C4D4D5C4○D4D10D10C4×D5D4×D5Q82D5
kernelC2×D208C4D208C4C2×C4×Dic5C2×D10⋊C4C10×C4⋊C4D5×C22×C4C22×D20C2×D20C2×Dic5C2×C4⋊C4C2×C10C4⋊C4C22×C4C2×C4C22C22
# reps181212116424861644

In GAP, Magma, Sage, TeX

C_2\times D_{20}\rtimes_8C_4
% in TeX

G:=Group("C2xD20:8C4");
// GroupNames label

G:=SmallGroup(320,1175);
// by ID

G=gap.SmallGroup(320,1175);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,758,184,297,80,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^20=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d^-1=b^11,d*c*d^-1=b^10*c>;
// generators/relations

׿
×
𝔽