Copied to
clipboard

?

G = C2×D5×Q16order 320 = 26·5

Direct product of C2, D5 and Q16

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D5×Q16, C40.33C23, C20.10C24, Dic2015C22, Dic10.6C23, C102(C2×Q16), C4.46(D4×D5), C52(C22×Q16), (C10×Q16)⋊7C2, (C4×D5).69D4, C20.85(C2×D4), (C2×C8).246D10, (C5×Q16)⋊8C22, C5⋊Q168C22, C8.39(C22×D5), C4.10(C23×D5), (C2×Dic20)⋊20C2, D10.113(C2×D4), (C5×Q8).4C23, (Q8×D5).8C22, Q8.4(C22×D5), (C2×C40).98C22, C52C8.22C23, (C2×Q8).152D10, Dic5.25(C2×D4), (C8×D5).44C22, (C4×D5).63C23, C22.142(D4×D5), (C2×C20).527C23, (C2×Dic5).168D4, (C22×D5).160D4, C10.111(C22×D4), (Q8×C10).149C22, (C2×Dic10).204C22, (D5×C2×C8).6C2, C2.84(C2×D4×D5), (C2×Q8×D5).8C2, (C2×C5⋊Q16)⋊27C2, (C2×C10).400(C2×D4), (C2×C4×D5).329C22, (C2×C4).615(C22×D5), (C2×C52C8).293C22, SmallGroup(320,1435)

Series: Derived Chief Lower central Upper central

C1C20 — C2×D5×Q16
C1C5C10C20C4×D5C2×C4×D5C2×Q8×D5 — C2×D5×Q16
C5C10C20 — C2×D5×Q16

Subgroups: 862 in 258 conjugacy classes, 111 normal (23 characteristic)
C1, C2, C2 [×2], C2 [×4], C4 [×2], C4 [×10], C22, C22 [×6], C5, C8 [×2], C8 [×2], C2×C4, C2×C4 [×17], Q8 [×4], Q8 [×16], C23, D5 [×4], C10, C10 [×2], C2×C8, C2×C8 [×5], Q16 [×4], Q16 [×12], C22×C4 [×3], C2×Q8 [×2], C2×Q8 [×16], Dic5 [×2], Dic5 [×4], C20 [×2], C20 [×4], D10 [×6], C2×C10, C22×C8, C2×Q16, C2×Q16 [×11], C22×Q8 [×2], C52C8 [×2], C40 [×2], Dic10 [×4], Dic10 [×10], C4×D5 [×4], C4×D5 [×8], C2×Dic5, C2×Dic5 [×2], C2×C20, C2×C20 [×2], C5×Q8 [×4], C5×Q8 [×2], C22×D5, C22×Q16, C8×D5 [×4], Dic20 [×4], C2×C52C8, C5⋊Q16 [×8], C2×C40, C5×Q16 [×4], C2×Dic10 [×2], C2×Dic10 [×2], C2×C4×D5, C2×C4×D5 [×2], Q8×D5 [×8], Q8×D5 [×4], Q8×C10 [×2], D5×C2×C8, C2×Dic20, D5×Q16 [×8], C2×C5⋊Q16 [×2], C10×Q16, C2×Q8×D5 [×2], C2×D5×Q16

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, Q16 [×4], C2×D4 [×6], C24, D10 [×7], C2×Q16 [×6], C22×D4, C22×D5 [×7], C22×Q16, D4×D5 [×2], C23×D5, D5×Q16 [×2], C2×D4×D5, C2×D5×Q16

Generators and relations
 G = < a,b,c,d,e | a2=b5=c2=d8=1, e2=d4, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 127)(2 128)(3 121)(4 122)(5 123)(6 124)(7 125)(8 126)(9 61)(10 62)(11 63)(12 64)(13 57)(14 58)(15 59)(16 60)(17 99)(18 100)(19 101)(20 102)(21 103)(22 104)(23 97)(24 98)(25 75)(26 76)(27 77)(28 78)(29 79)(30 80)(31 73)(32 74)(33 71)(34 72)(35 65)(36 66)(37 67)(38 68)(39 69)(40 70)(41 150)(42 151)(43 152)(44 145)(45 146)(46 147)(47 148)(48 149)(49 143)(50 144)(51 137)(52 138)(53 139)(54 140)(55 141)(56 142)(81 116)(82 117)(83 118)(84 119)(85 120)(86 113)(87 114)(88 115)(89 129)(90 130)(91 131)(92 132)(93 133)(94 134)(95 135)(96 136)(105 156)(106 157)(107 158)(108 159)(109 160)(110 153)(111 154)(112 155)
(1 138 15 81 157)(2 139 16 82 158)(3 140 9 83 159)(4 141 10 84 160)(5 142 11 85 153)(6 143 12 86 154)(7 144 13 87 155)(8 137 14 88 156)(17 80 149 96 72)(18 73 150 89 65)(19 74 151 90 66)(20 75 152 91 67)(21 76 145 92 68)(22 77 146 93 69)(23 78 147 94 70)(24 79 148 95 71)(25 43 131 37 102)(26 44 132 38 103)(27 45 133 39 104)(28 46 134 40 97)(29 47 135 33 98)(30 48 136 34 99)(31 41 129 35 100)(32 42 130 36 101)(49 64 113 111 124)(50 57 114 112 125)(51 58 115 105 126)(52 59 116 106 127)(53 60 117 107 128)(54 61 118 108 121)(55 62 119 109 122)(56 63 120 110 123)
(1 157)(2 158)(3 159)(4 160)(5 153)(6 154)(7 155)(8 156)(17 96)(18 89)(19 90)(20 91)(21 92)(22 93)(23 94)(24 95)(25 43)(26 44)(27 45)(28 46)(29 47)(30 48)(31 41)(32 42)(49 113)(50 114)(51 115)(52 116)(53 117)(54 118)(55 119)(56 120)(73 150)(74 151)(75 152)(76 145)(77 146)(78 147)(79 148)(80 149)(81 138)(82 139)(83 140)(84 141)(85 142)(86 143)(87 144)(88 137)(97 134)(98 135)(99 136)(100 129)(101 130)(102 131)(103 132)(104 133)(105 126)(106 127)(107 128)(108 121)(109 122)(110 123)(111 124)(112 125)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(1 43 5 47)(2 42 6 46)(3 41 7 45)(4 48 8 44)(9 35 13 39)(10 34 14 38)(11 33 15 37)(12 40 16 36)(17 115 21 119)(18 114 22 118)(19 113 23 117)(20 120 24 116)(25 153 29 157)(26 160 30 156)(27 159 31 155)(28 158 32 154)(49 94 53 90)(50 93 54 89)(51 92 55 96)(52 91 56 95)(57 69 61 65)(58 68 62 72)(59 67 63 71)(60 66 64 70)(73 112 77 108)(74 111 78 107)(75 110 79 106)(76 109 80 105)(81 102 85 98)(82 101 86 97)(83 100 87 104)(84 99 88 103)(121 150 125 146)(122 149 126 145)(123 148 127 152)(124 147 128 151)(129 144 133 140)(130 143 134 139)(131 142 135 138)(132 141 136 137)

G:=sub<Sym(160)| (1,127)(2,128)(3,121)(4,122)(5,123)(6,124)(7,125)(8,126)(9,61)(10,62)(11,63)(12,64)(13,57)(14,58)(15,59)(16,60)(17,99)(18,100)(19,101)(20,102)(21,103)(22,104)(23,97)(24,98)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,73)(32,74)(33,71)(34,72)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70)(41,150)(42,151)(43,152)(44,145)(45,146)(46,147)(47,148)(48,149)(49,143)(50,144)(51,137)(52,138)(53,139)(54,140)(55,141)(56,142)(81,116)(82,117)(83,118)(84,119)(85,120)(86,113)(87,114)(88,115)(89,129)(90,130)(91,131)(92,132)(93,133)(94,134)(95,135)(96,136)(105,156)(106,157)(107,158)(108,159)(109,160)(110,153)(111,154)(112,155), (1,138,15,81,157)(2,139,16,82,158)(3,140,9,83,159)(4,141,10,84,160)(5,142,11,85,153)(6,143,12,86,154)(7,144,13,87,155)(8,137,14,88,156)(17,80,149,96,72)(18,73,150,89,65)(19,74,151,90,66)(20,75,152,91,67)(21,76,145,92,68)(22,77,146,93,69)(23,78,147,94,70)(24,79,148,95,71)(25,43,131,37,102)(26,44,132,38,103)(27,45,133,39,104)(28,46,134,40,97)(29,47,135,33,98)(30,48,136,34,99)(31,41,129,35,100)(32,42,130,36,101)(49,64,113,111,124)(50,57,114,112,125)(51,58,115,105,126)(52,59,116,106,127)(53,60,117,107,128)(54,61,118,108,121)(55,62,119,109,122)(56,63,120,110,123), (1,157)(2,158)(3,159)(4,160)(5,153)(6,154)(7,155)(8,156)(17,96)(18,89)(19,90)(20,91)(21,92)(22,93)(23,94)(24,95)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,41)(32,42)(49,113)(50,114)(51,115)(52,116)(53,117)(54,118)(55,119)(56,120)(73,150)(74,151)(75,152)(76,145)(77,146)(78,147)(79,148)(80,149)(81,138)(82,139)(83,140)(84,141)(85,142)(86,143)(87,144)(88,137)(97,134)(98,135)(99,136)(100,129)(101,130)(102,131)(103,132)(104,133)(105,126)(106,127)(107,128)(108,121)(109,122)(110,123)(111,124)(112,125), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,43,5,47)(2,42,6,46)(3,41,7,45)(4,48,8,44)(9,35,13,39)(10,34,14,38)(11,33,15,37)(12,40,16,36)(17,115,21,119)(18,114,22,118)(19,113,23,117)(20,120,24,116)(25,153,29,157)(26,160,30,156)(27,159,31,155)(28,158,32,154)(49,94,53,90)(50,93,54,89)(51,92,55,96)(52,91,56,95)(57,69,61,65)(58,68,62,72)(59,67,63,71)(60,66,64,70)(73,112,77,108)(74,111,78,107)(75,110,79,106)(76,109,80,105)(81,102,85,98)(82,101,86,97)(83,100,87,104)(84,99,88,103)(121,150,125,146)(122,149,126,145)(123,148,127,152)(124,147,128,151)(129,144,133,140)(130,143,134,139)(131,142,135,138)(132,141,136,137)>;

G:=Group( (1,127)(2,128)(3,121)(4,122)(5,123)(6,124)(7,125)(8,126)(9,61)(10,62)(11,63)(12,64)(13,57)(14,58)(15,59)(16,60)(17,99)(18,100)(19,101)(20,102)(21,103)(22,104)(23,97)(24,98)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,73)(32,74)(33,71)(34,72)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70)(41,150)(42,151)(43,152)(44,145)(45,146)(46,147)(47,148)(48,149)(49,143)(50,144)(51,137)(52,138)(53,139)(54,140)(55,141)(56,142)(81,116)(82,117)(83,118)(84,119)(85,120)(86,113)(87,114)(88,115)(89,129)(90,130)(91,131)(92,132)(93,133)(94,134)(95,135)(96,136)(105,156)(106,157)(107,158)(108,159)(109,160)(110,153)(111,154)(112,155), (1,138,15,81,157)(2,139,16,82,158)(3,140,9,83,159)(4,141,10,84,160)(5,142,11,85,153)(6,143,12,86,154)(7,144,13,87,155)(8,137,14,88,156)(17,80,149,96,72)(18,73,150,89,65)(19,74,151,90,66)(20,75,152,91,67)(21,76,145,92,68)(22,77,146,93,69)(23,78,147,94,70)(24,79,148,95,71)(25,43,131,37,102)(26,44,132,38,103)(27,45,133,39,104)(28,46,134,40,97)(29,47,135,33,98)(30,48,136,34,99)(31,41,129,35,100)(32,42,130,36,101)(49,64,113,111,124)(50,57,114,112,125)(51,58,115,105,126)(52,59,116,106,127)(53,60,117,107,128)(54,61,118,108,121)(55,62,119,109,122)(56,63,120,110,123), (1,157)(2,158)(3,159)(4,160)(5,153)(6,154)(7,155)(8,156)(17,96)(18,89)(19,90)(20,91)(21,92)(22,93)(23,94)(24,95)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,41)(32,42)(49,113)(50,114)(51,115)(52,116)(53,117)(54,118)(55,119)(56,120)(73,150)(74,151)(75,152)(76,145)(77,146)(78,147)(79,148)(80,149)(81,138)(82,139)(83,140)(84,141)(85,142)(86,143)(87,144)(88,137)(97,134)(98,135)(99,136)(100,129)(101,130)(102,131)(103,132)(104,133)(105,126)(106,127)(107,128)(108,121)(109,122)(110,123)(111,124)(112,125), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,43,5,47)(2,42,6,46)(3,41,7,45)(4,48,8,44)(9,35,13,39)(10,34,14,38)(11,33,15,37)(12,40,16,36)(17,115,21,119)(18,114,22,118)(19,113,23,117)(20,120,24,116)(25,153,29,157)(26,160,30,156)(27,159,31,155)(28,158,32,154)(49,94,53,90)(50,93,54,89)(51,92,55,96)(52,91,56,95)(57,69,61,65)(58,68,62,72)(59,67,63,71)(60,66,64,70)(73,112,77,108)(74,111,78,107)(75,110,79,106)(76,109,80,105)(81,102,85,98)(82,101,86,97)(83,100,87,104)(84,99,88,103)(121,150,125,146)(122,149,126,145)(123,148,127,152)(124,147,128,151)(129,144,133,140)(130,143,134,139)(131,142,135,138)(132,141,136,137) );

G=PermutationGroup([(1,127),(2,128),(3,121),(4,122),(5,123),(6,124),(7,125),(8,126),(9,61),(10,62),(11,63),(12,64),(13,57),(14,58),(15,59),(16,60),(17,99),(18,100),(19,101),(20,102),(21,103),(22,104),(23,97),(24,98),(25,75),(26,76),(27,77),(28,78),(29,79),(30,80),(31,73),(32,74),(33,71),(34,72),(35,65),(36,66),(37,67),(38,68),(39,69),(40,70),(41,150),(42,151),(43,152),(44,145),(45,146),(46,147),(47,148),(48,149),(49,143),(50,144),(51,137),(52,138),(53,139),(54,140),(55,141),(56,142),(81,116),(82,117),(83,118),(84,119),(85,120),(86,113),(87,114),(88,115),(89,129),(90,130),(91,131),(92,132),(93,133),(94,134),(95,135),(96,136),(105,156),(106,157),(107,158),(108,159),(109,160),(110,153),(111,154),(112,155)], [(1,138,15,81,157),(2,139,16,82,158),(3,140,9,83,159),(4,141,10,84,160),(5,142,11,85,153),(6,143,12,86,154),(7,144,13,87,155),(8,137,14,88,156),(17,80,149,96,72),(18,73,150,89,65),(19,74,151,90,66),(20,75,152,91,67),(21,76,145,92,68),(22,77,146,93,69),(23,78,147,94,70),(24,79,148,95,71),(25,43,131,37,102),(26,44,132,38,103),(27,45,133,39,104),(28,46,134,40,97),(29,47,135,33,98),(30,48,136,34,99),(31,41,129,35,100),(32,42,130,36,101),(49,64,113,111,124),(50,57,114,112,125),(51,58,115,105,126),(52,59,116,106,127),(53,60,117,107,128),(54,61,118,108,121),(55,62,119,109,122),(56,63,120,110,123)], [(1,157),(2,158),(3,159),(4,160),(5,153),(6,154),(7,155),(8,156),(17,96),(18,89),(19,90),(20,91),(21,92),(22,93),(23,94),(24,95),(25,43),(26,44),(27,45),(28,46),(29,47),(30,48),(31,41),(32,42),(49,113),(50,114),(51,115),(52,116),(53,117),(54,118),(55,119),(56,120),(73,150),(74,151),(75,152),(76,145),(77,146),(78,147),(79,148),(80,149),(81,138),(82,139),(83,140),(84,141),(85,142),(86,143),(87,144),(88,137),(97,134),(98,135),(99,136),(100,129),(101,130),(102,131),(103,132),(104,133),(105,126),(106,127),(107,128),(108,121),(109,122),(110,123),(111,124),(112,125)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(1,43,5,47),(2,42,6,46),(3,41,7,45),(4,48,8,44),(9,35,13,39),(10,34,14,38),(11,33,15,37),(12,40,16,36),(17,115,21,119),(18,114,22,118),(19,113,23,117),(20,120,24,116),(25,153,29,157),(26,160,30,156),(27,159,31,155),(28,158,32,154),(49,94,53,90),(50,93,54,89),(51,92,55,96),(52,91,56,95),(57,69,61,65),(58,68,62,72),(59,67,63,71),(60,66,64,70),(73,112,77,108),(74,111,78,107),(75,110,79,106),(76,109,80,105),(81,102,85,98),(82,101,86,97),(83,100,87,104),(84,99,88,103),(121,150,125,146),(122,149,126,145),(123,148,127,152),(124,147,128,151),(129,144,133,140),(130,143,134,139),(131,142,135,138),(132,141,136,137)])

Matrix representation G ⊆ GL4(𝔽41) generated by

1000
0100
00400
00040
,
1000
0100
00401
00337
,
1000
0100
00400
00331
,
243500
7000
00400
00040
,
374000
17400
00400
00040
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40],[1,0,0,0,0,1,0,0,0,0,40,33,0,0,1,7],[1,0,0,0,0,1,0,0,0,0,40,33,0,0,0,1],[24,7,0,0,35,0,0,0,0,0,40,0,0,0,0,40],[37,17,0,0,40,4,0,0,0,0,40,0,0,0,0,40] >;

56 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L5A5B8A8B8C8D8E8F8G8H10A···10F20A20B20C20D20E···20L40A···40H
order12222222444444444444558888888810···102020202020···2040···40
size11115555224444101020202020222222101010102···244448···84···4

56 irreducible representations

dim111111122222222444
type+++++++++++-+++++-
imageC1C2C2C2C2C2C2D4D4D4D5Q16D10D10D10D4×D5D4×D5D5×Q16
kernelC2×D5×Q16D5×C2×C8C2×Dic20D5×Q16C2×C5⋊Q16C10×Q16C2×Q8×D5C4×D5C2×Dic5C22×D5C2×Q16D10C2×C8Q16C2×Q8C4C22C2
# reps111821221128284228

In GAP, Magma, Sage, TeX

C_2\times D_5\times Q_{16}
% in TeX

G:=Group("C2xD5xQ16");
// GroupNames label

G:=SmallGroup(320,1435);
// by ID

G=gap.SmallGroup(320,1435);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,184,185,136,438,235,102,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^5=c^2=d^8=1,e^2=d^4,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽