Copied to
clipboard

G = C5×C86D4order 320 = 26·5

Direct product of C5 and C86D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C5×C86D4, C4028D4, C2012M4(2), C86(C5×D4), C4⋊C816C10, (C4×C40)⋊31C2, (C4×C8)⋊15C10, C4⋊C4.8C20, (C2×D4).9C20, (C4×D4).3C10, C4.81(D4×C10), C2.11(D4×C20), C41(C5×M4(2)), C22⋊C814C10, (D4×C20).18C2, (D4×C10).34C4, C20.486(C2×D4), C10.143(C4×D4), C22⋊C4.5C20, C10.74(C8○D4), C42.69(C2×C10), C23.12(C2×C20), C20.355(C4○D4), (C2×M4(2))⋊15C10, (C10×M4(2))⋊33C2, (C4×C20).354C22, (C2×C20).992C23, (C2×C40).328C22, C2.10(C10×M4(2)), C10.88(C2×M4(2)), C22.48(C22×C20), (C22×C20).418C22, (C5×C4⋊C8)⋊35C2, C2.8(C5×C8○D4), (C5×C4⋊C4).33C4, C4.53(C5×C4○D4), (C5×C22⋊C8)⋊31C2, (C2×C8).53(C2×C10), (C2×C4).29(C2×C20), (C2×C20).386(C2×C4), (C5×C22⋊C4).20C4, (C22×C4).36(C2×C10), (C22×C10).92(C2×C4), (C2×C4).160(C22×C10), (C2×C10).343(C22×C4), SmallGroup(320,937)

Series: Derived Chief Lower central Upper central

C1C22 — C5×C86D4
C1C2C4C2×C4C2×C20C2×C40C5×C22⋊C8 — C5×C86D4
C1C22 — C5×C86D4
C1C2×C20 — C5×C86D4

Generators and relations for C5×C86D4
 G = < a,b,c,d | a5=b8=c4=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b5, dcd=c-1 >

Subgroups: 178 in 122 conjugacy classes, 74 normal (38 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, C2×C4, D4, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C2×D4, C20, C20, C20, C2×C10, C2×C10, C4×C8, C22⋊C8, C4⋊C8, C4×D4, C2×M4(2), C40, C40, C2×C20, C2×C20, C2×C20, C5×D4, C22×C10, C86D4, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×C40, C2×C40, C5×M4(2), C22×C20, D4×C10, C4×C40, C5×C22⋊C8, C5×C4⋊C8, D4×C20, C10×M4(2), C5×C86D4
Quotients: C1, C2, C4, C22, C5, C2×C4, D4, C23, C10, M4(2), C22×C4, C2×D4, C4○D4, C20, C2×C10, C4×D4, C2×M4(2), C8○D4, C2×C20, C5×D4, C22×C10, C86D4, C5×M4(2), C22×C20, D4×C10, C5×C4○D4, D4×C20, C10×M4(2), C5×C8○D4, C5×C86D4

Smallest permutation representation of C5×C86D4
On 160 points
Generators in S160
(1 55 13 63 23)(2 56 14 64 24)(3 49 15 57 17)(4 50 16 58 18)(5 51 9 59 19)(6 52 10 60 20)(7 53 11 61 21)(8 54 12 62 22)(25 88 73 33 65)(26 81 74 34 66)(27 82 75 35 67)(28 83 76 36 68)(29 84 77 37 69)(30 85 78 38 70)(31 86 79 39 71)(32 87 80 40 72)(41 157 116 149 108)(42 158 117 150 109)(43 159 118 151 110)(44 160 119 152 111)(45 153 120 145 112)(46 154 113 146 105)(47 155 114 147 106)(48 156 115 148 107)(89 125 138 97 130)(90 126 139 98 131)(91 127 140 99 132)(92 128 141 100 133)(93 121 142 101 134)(94 122 143 102 135)(95 123 144 103 136)(96 124 137 104 129)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(1 105 27 89)(2 106 28 90)(3 107 29 91)(4 108 30 92)(5 109 31 93)(6 110 32 94)(7 111 25 95)(8 112 26 96)(9 158 79 142)(10 159 80 143)(11 160 73 144)(12 153 74 137)(13 154 75 138)(14 155 76 139)(15 156 77 140)(16 157 78 141)(17 148 69 132)(18 149 70 133)(19 150 71 134)(20 151 72 135)(21 152 65 136)(22 145 66 129)(23 146 67 130)(24 147 68 131)(33 103 61 119)(34 104 62 120)(35 97 63 113)(36 98 64 114)(37 99 57 115)(38 100 58 116)(39 101 59 117)(40 102 60 118)(41 85 128 50)(42 86 121 51)(43 87 122 52)(44 88 123 53)(45 81 124 54)(46 82 125 55)(47 83 126 56)(48 84 127 49)
(1 89)(2 94)(3 91)(4 96)(5 93)(6 90)(7 95)(8 92)(9 142)(10 139)(11 144)(12 141)(13 138)(14 143)(15 140)(16 137)(17 132)(18 129)(19 134)(20 131)(21 136)(22 133)(23 130)(24 135)(25 111)(26 108)(27 105)(28 110)(29 107)(30 112)(31 109)(32 106)(33 119)(34 116)(35 113)(36 118)(37 115)(38 120)(39 117)(40 114)(41 81)(42 86)(43 83)(44 88)(45 85)(46 82)(47 87)(48 84)(49 127)(50 124)(51 121)(52 126)(53 123)(54 128)(55 125)(56 122)(57 99)(58 104)(59 101)(60 98)(61 103)(62 100)(63 97)(64 102)(65 152)(66 149)(67 146)(68 151)(69 148)(70 145)(71 150)(72 147)(73 160)(74 157)(75 154)(76 159)(77 156)(78 153)(79 158)(80 155)

G:=sub<Sym(160)| (1,55,13,63,23)(2,56,14,64,24)(3,49,15,57,17)(4,50,16,58,18)(5,51,9,59,19)(6,52,10,60,20)(7,53,11,61,21)(8,54,12,62,22)(25,88,73,33,65)(26,81,74,34,66)(27,82,75,35,67)(28,83,76,36,68)(29,84,77,37,69)(30,85,78,38,70)(31,86,79,39,71)(32,87,80,40,72)(41,157,116,149,108)(42,158,117,150,109)(43,159,118,151,110)(44,160,119,152,111)(45,153,120,145,112)(46,154,113,146,105)(47,155,114,147,106)(48,156,115,148,107)(89,125,138,97,130)(90,126,139,98,131)(91,127,140,99,132)(92,128,141,100,133)(93,121,142,101,134)(94,122,143,102,135)(95,123,144,103,136)(96,124,137,104,129), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,105,27,89)(2,106,28,90)(3,107,29,91)(4,108,30,92)(5,109,31,93)(6,110,32,94)(7,111,25,95)(8,112,26,96)(9,158,79,142)(10,159,80,143)(11,160,73,144)(12,153,74,137)(13,154,75,138)(14,155,76,139)(15,156,77,140)(16,157,78,141)(17,148,69,132)(18,149,70,133)(19,150,71,134)(20,151,72,135)(21,152,65,136)(22,145,66,129)(23,146,67,130)(24,147,68,131)(33,103,61,119)(34,104,62,120)(35,97,63,113)(36,98,64,114)(37,99,57,115)(38,100,58,116)(39,101,59,117)(40,102,60,118)(41,85,128,50)(42,86,121,51)(43,87,122,52)(44,88,123,53)(45,81,124,54)(46,82,125,55)(47,83,126,56)(48,84,127,49), (1,89)(2,94)(3,91)(4,96)(5,93)(6,90)(7,95)(8,92)(9,142)(10,139)(11,144)(12,141)(13,138)(14,143)(15,140)(16,137)(17,132)(18,129)(19,134)(20,131)(21,136)(22,133)(23,130)(24,135)(25,111)(26,108)(27,105)(28,110)(29,107)(30,112)(31,109)(32,106)(33,119)(34,116)(35,113)(36,118)(37,115)(38,120)(39,117)(40,114)(41,81)(42,86)(43,83)(44,88)(45,85)(46,82)(47,87)(48,84)(49,127)(50,124)(51,121)(52,126)(53,123)(54,128)(55,125)(56,122)(57,99)(58,104)(59,101)(60,98)(61,103)(62,100)(63,97)(64,102)(65,152)(66,149)(67,146)(68,151)(69,148)(70,145)(71,150)(72,147)(73,160)(74,157)(75,154)(76,159)(77,156)(78,153)(79,158)(80,155)>;

G:=Group( (1,55,13,63,23)(2,56,14,64,24)(3,49,15,57,17)(4,50,16,58,18)(5,51,9,59,19)(6,52,10,60,20)(7,53,11,61,21)(8,54,12,62,22)(25,88,73,33,65)(26,81,74,34,66)(27,82,75,35,67)(28,83,76,36,68)(29,84,77,37,69)(30,85,78,38,70)(31,86,79,39,71)(32,87,80,40,72)(41,157,116,149,108)(42,158,117,150,109)(43,159,118,151,110)(44,160,119,152,111)(45,153,120,145,112)(46,154,113,146,105)(47,155,114,147,106)(48,156,115,148,107)(89,125,138,97,130)(90,126,139,98,131)(91,127,140,99,132)(92,128,141,100,133)(93,121,142,101,134)(94,122,143,102,135)(95,123,144,103,136)(96,124,137,104,129), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,105,27,89)(2,106,28,90)(3,107,29,91)(4,108,30,92)(5,109,31,93)(6,110,32,94)(7,111,25,95)(8,112,26,96)(9,158,79,142)(10,159,80,143)(11,160,73,144)(12,153,74,137)(13,154,75,138)(14,155,76,139)(15,156,77,140)(16,157,78,141)(17,148,69,132)(18,149,70,133)(19,150,71,134)(20,151,72,135)(21,152,65,136)(22,145,66,129)(23,146,67,130)(24,147,68,131)(33,103,61,119)(34,104,62,120)(35,97,63,113)(36,98,64,114)(37,99,57,115)(38,100,58,116)(39,101,59,117)(40,102,60,118)(41,85,128,50)(42,86,121,51)(43,87,122,52)(44,88,123,53)(45,81,124,54)(46,82,125,55)(47,83,126,56)(48,84,127,49), (1,89)(2,94)(3,91)(4,96)(5,93)(6,90)(7,95)(8,92)(9,142)(10,139)(11,144)(12,141)(13,138)(14,143)(15,140)(16,137)(17,132)(18,129)(19,134)(20,131)(21,136)(22,133)(23,130)(24,135)(25,111)(26,108)(27,105)(28,110)(29,107)(30,112)(31,109)(32,106)(33,119)(34,116)(35,113)(36,118)(37,115)(38,120)(39,117)(40,114)(41,81)(42,86)(43,83)(44,88)(45,85)(46,82)(47,87)(48,84)(49,127)(50,124)(51,121)(52,126)(53,123)(54,128)(55,125)(56,122)(57,99)(58,104)(59,101)(60,98)(61,103)(62,100)(63,97)(64,102)(65,152)(66,149)(67,146)(68,151)(69,148)(70,145)(71,150)(72,147)(73,160)(74,157)(75,154)(76,159)(77,156)(78,153)(79,158)(80,155) );

G=PermutationGroup([[(1,55,13,63,23),(2,56,14,64,24),(3,49,15,57,17),(4,50,16,58,18),(5,51,9,59,19),(6,52,10,60,20),(7,53,11,61,21),(8,54,12,62,22),(25,88,73,33,65),(26,81,74,34,66),(27,82,75,35,67),(28,83,76,36,68),(29,84,77,37,69),(30,85,78,38,70),(31,86,79,39,71),(32,87,80,40,72),(41,157,116,149,108),(42,158,117,150,109),(43,159,118,151,110),(44,160,119,152,111),(45,153,120,145,112),(46,154,113,146,105),(47,155,114,147,106),(48,156,115,148,107),(89,125,138,97,130),(90,126,139,98,131),(91,127,140,99,132),(92,128,141,100,133),(93,121,142,101,134),(94,122,143,102,135),(95,123,144,103,136),(96,124,137,104,129)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(1,105,27,89),(2,106,28,90),(3,107,29,91),(4,108,30,92),(5,109,31,93),(6,110,32,94),(7,111,25,95),(8,112,26,96),(9,158,79,142),(10,159,80,143),(11,160,73,144),(12,153,74,137),(13,154,75,138),(14,155,76,139),(15,156,77,140),(16,157,78,141),(17,148,69,132),(18,149,70,133),(19,150,71,134),(20,151,72,135),(21,152,65,136),(22,145,66,129),(23,146,67,130),(24,147,68,131),(33,103,61,119),(34,104,62,120),(35,97,63,113),(36,98,64,114),(37,99,57,115),(38,100,58,116),(39,101,59,117),(40,102,60,118),(41,85,128,50),(42,86,121,51),(43,87,122,52),(44,88,123,53),(45,81,124,54),(46,82,125,55),(47,83,126,56),(48,84,127,49)], [(1,89),(2,94),(3,91),(4,96),(5,93),(6,90),(7,95),(8,92),(9,142),(10,139),(11,144),(12,141),(13,138),(14,143),(15,140),(16,137),(17,132),(18,129),(19,134),(20,131),(21,136),(22,133),(23,130),(24,135),(25,111),(26,108),(27,105),(28,110),(29,107),(30,112),(31,109),(32,106),(33,119),(34,116),(35,113),(36,118),(37,115),(38,120),(39,117),(40,114),(41,81),(42,86),(43,83),(44,88),(45,85),(46,82),(47,87),(48,84),(49,127),(50,124),(51,121),(52,126),(53,123),(54,128),(55,125),(56,122),(57,99),(58,104),(59,101),(60,98),(61,103),(62,100),(63,97),(64,102),(65,152),(66,149),(67,146),(68,151),(69,148),(70,145),(71,150),(72,147),(73,160),(74,157),(75,154),(76,159),(77,156),(78,153),(79,158),(80,155)]])

140 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I4J5A5B5C5D8A···8H8I8J8K8L10A···10L10M···10T20A···20P20Q···20AF20AG···20AN40A···40AF40AG···40AV
order122222444444444455558···8888810···1010···1020···2020···2020···2040···4040···40
size111144111122224411112···244441···14···41···12···24···42···24···4

140 irreducible representations

dim11111111111111111122222222
type+++++++
imageC1C2C2C2C2C2C4C4C4C5C10C10C10C10C10C20C20C20D4M4(2)C4○D4C8○D4C5×D4C5×M4(2)C5×C4○D4C5×C8○D4
kernelC5×C86D4C4×C40C5×C22⋊C8C5×C4⋊C8D4×C20C10×M4(2)C5×C22⋊C4C5×C4⋊C4D4×C10C86D4C4×C8C22⋊C8C4⋊C8C4×D4C2×M4(2)C22⋊C4C4⋊C4C2×D4C40C20C20C10C8C4C4C2
# reps11211242244844816882424816816

Matrix representation of C5×C86D4 in GL4(𝔽41) generated by

18000
01800
0010
0001
,
163900
212500
0001
0090
,
34600
19700
0010
0001
,
34600
33700
0010
00040
G:=sub<GL(4,GF(41))| [18,0,0,0,0,18,0,0,0,0,1,0,0,0,0,1],[16,21,0,0,39,25,0,0,0,0,0,9,0,0,1,0],[34,19,0,0,6,7,0,0,0,0,1,0,0,0,0,1],[34,33,0,0,6,7,0,0,0,0,1,0,0,0,0,40] >;

C5×C86D4 in GAP, Magma, Sage, TeX

C_5\times C_8\rtimes_6D_4
% in TeX

G:=Group("C5xC8:6D4");
// GroupNames label

G:=SmallGroup(320,937);
// by ID

G=gap.SmallGroup(320,937);
# by ID

G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,560,589,3446,1731,436,124]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^8=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^5,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽