extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C6).1(C4×S3) = C32⋊C6⋊C8 | φ: C4×S3/C2 → D6 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).1(C4xS3) | 432,76 |
(C3×C6).2(C4×S3) = He3⋊M4(2) | φ: C4×S3/C2 → D6 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).2(C4xS3) | 432,77 |
(C3×C6).3(C4×S3) = C12.89S32 | φ: C4×S3/C2 → D6 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).3(C4xS3) | 432,81 |
(C3×C6).4(C4×S3) = He3⋊3M4(2) | φ: C4×S3/C2 → D6 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).4(C4xS3) | 432,82 |
(C3×C6).5(C4×S3) = He3⋊C42 | φ: C4×S3/C2 → D6 ⊆ Aut C3×C6 | 144 | | (C3xC6).5(C4xS3) | 432,94 |
(C3×C6).6(C4×S3) = C62.D6 | φ: C4×S3/C2 → D6 ⊆ Aut C3×C6 | 144 | | (C3xC6).6(C4xS3) | 432,95 |
(C3×C6).7(C4×S3) = C62.3D6 | φ: C4×S3/C2 → D6 ⊆ Aut C3×C6 | 144 | | (C3xC6).7(C4xS3) | 432,96 |
(C3×C6).8(C4×S3) = C62.4D6 | φ: C4×S3/C2 → D6 ⊆ Aut C3×C6 | 72 | | (C3xC6).8(C4xS3) | 432,97 |
(C3×C6).9(C4×S3) = C62.5D6 | φ: C4×S3/C2 → D6 ⊆ Aut C3×C6 | 72 | | (C3xC6).9(C4xS3) | 432,98 |
(C3×C6).10(C4×S3) = C8×C32⋊C6 | φ: C4×S3/C4 → S3 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).10(C4xS3) | 432,115 |
(C3×C6).11(C4×S3) = He3⋊5M4(2) | φ: C4×S3/C4 → S3 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).11(C4xS3) | 432,116 |
(C3×C6).12(C4×S3) = C8×C9⋊C6 | φ: C4×S3/C4 → S3 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).12(C4xS3) | 432,120 |
(C3×C6).13(C4×S3) = C72⋊C6 | φ: C4×S3/C4 → S3 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).13(C4xS3) | 432,121 |
(C3×C6).14(C4×S3) = C4×C32⋊C12 | φ: C4×S3/C4 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).14(C4xS3) | 432,138 |
(C3×C6).15(C4×S3) = C62.19D6 | φ: C4×S3/C4 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).15(C4xS3) | 432,139 |
(C3×C6).16(C4×S3) = C62.21D6 | φ: C4×S3/C4 → S3 ⊆ Aut C3×C6 | 72 | | (C3xC6).16(C4xS3) | 432,141 |
(C3×C6).17(C4×S3) = C4×C9⋊C12 | φ: C4×S3/C4 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).17(C4xS3) | 432,144 |
(C3×C6).18(C4×S3) = Dic9⋊C12 | φ: C4×S3/C4 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).18(C4xS3) | 432,145 |
(C3×C6).19(C4×S3) = D18⋊C12 | φ: C4×S3/C4 → S3 ⊆ Aut C3×C6 | 72 | | (C3xC6).19(C4xS3) | 432,147 |
(C3×C6).20(C4×S3) = C8×He3⋊C2 | φ: C4×S3/C4 → S3 ⊆ Aut C3×C6 | 72 | 3 | (C3xC6).20(C4xS3) | 432,173 |
(C3×C6).21(C4×S3) = He3⋊6M4(2) | φ: C4×S3/C4 → S3 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).21(C4xS3) | 432,174 |
(C3×C6).22(C4×S3) = C4×He3⋊3C4 | φ: C4×S3/C4 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).22(C4xS3) | 432,186 |
(C3×C6).23(C4×S3) = C62.29D6 | φ: C4×S3/C4 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).23(C4xS3) | 432,187 |
(C3×C6).24(C4×S3) = C62.31D6 | φ: C4×S3/C4 → S3 ⊆ Aut C3×C6 | 72 | | (C3xC6).24(C4xS3) | 432,189 |
(C3×C6).25(C4×S3) = C2×C4×C9⋊C6 | φ: C4×S3/C4 → S3 ⊆ Aut C3×C6 | 72 | | (C3xC6).25(C4xS3) | 432,353 |
(C3×C6).26(C4×S3) = Dic3×C32⋊C4 | φ: C4×S3/S3 → C4 ⊆ Aut C3×C6 | 48 | 8- | (C3xC6).26(C4xS3) | 432,567 |
(C3×C6).27(C4×S3) = D6⋊(C32⋊C4) | φ: C4×S3/S3 → C4 ⊆ Aut C3×C6 | 24 | 8+ | (C3xC6).27(C4xS3) | 432,568 |
(C3×C6).28(C4×S3) = C33⋊(C4⋊C4) | φ: C4×S3/S3 → C4 ⊆ Aut C3×C6 | 48 | 8- | (C3xC6).28(C4xS3) | 432,569 |
(C3×C6).29(C4×S3) = S3×C32⋊2C8 | φ: C4×S3/S3 → C4 ⊆ Aut C3×C6 | 48 | 8- | (C3xC6).29(C4xS3) | 432,570 |
(C3×C6).30(C4×S3) = C33⋊5(C2×C8) | φ: C4×S3/S3 → C4 ⊆ Aut C3×C6 | 24 | 8+ | (C3xC6).30(C4xS3) | 432,571 |
(C3×C6).31(C4×S3) = C33⋊M4(2) | φ: C4×S3/S3 → C4 ⊆ Aut C3×C6 | 48 | 8- | (C3xC6).31(C4xS3) | 432,572 |
(C3×C6).32(C4×S3) = C33⋊2M4(2) | φ: C4×S3/S3 → C4 ⊆ Aut C3×C6 | 24 | 8+ | (C3xC6).32(C4xS3) | 432,573 |
(C3×C6).33(C4×S3) = D9×C3⋊C8 | φ: C4×S3/C6 → C22 ⊆ Aut C3×C6 | 144 | 4 | (C3xC6).33(C4xS3) | 432,58 |
(C3×C6).34(C4×S3) = C36.38D6 | φ: C4×S3/C6 → C22 ⊆ Aut C3×C6 | 72 | 4 | (C3xC6).34(C4xS3) | 432,59 |
(C3×C6).35(C4×S3) = C36.39D6 | φ: C4×S3/C6 → C22 ⊆ Aut C3×C6 | 144 | 4 | (C3xC6).35(C4xS3) | 432,60 |
(C3×C6).36(C4×S3) = C36.40D6 | φ: C4×S3/C6 → C22 ⊆ Aut C3×C6 | 72 | 4 | (C3xC6).36(C4xS3) | 432,61 |
(C3×C6).37(C4×S3) = Dic3×Dic9 | φ: C4×S3/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).37(C4xS3) | 432,87 |
(C3×C6).38(C4×S3) = Dic9⋊Dic3 | φ: C4×S3/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).38(C4xS3) | 432,88 |
(C3×C6).39(C4×S3) = C18.Dic6 | φ: C4×S3/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).39(C4xS3) | 432,89 |
(C3×C6).40(C4×S3) = D18⋊Dic3 | φ: C4×S3/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).40(C4xS3) | 432,91 |
(C3×C6).41(C4×S3) = C6.18D36 | φ: C4×S3/C6 → C22 ⊆ Aut C3×C6 | 72 | | (C3xC6).41(C4xS3) | 432,92 |
(C3×C6).42(C4×S3) = C2×Dic3×D9 | φ: C4×S3/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).42(C4xS3) | 432,304 |
(C3×C6).43(C4×S3) = C2×C18.D6 | φ: C4×S3/C6 → C22 ⊆ Aut C3×C6 | 72 | | (C3xC6).43(C4xS3) | 432,306 |
(C3×C6).44(C4×S3) = C3⋊S3×C3⋊C8 | φ: C4×S3/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).44(C4xS3) | 432,431 |
(C3×C6).45(C4×S3) = C12.69S32 | φ: C4×S3/C6 → C22 ⊆ Aut C3×C6 | 72 | | (C3xC6).45(C4xS3) | 432,432 |
(C3×C6).46(C4×S3) = C33⋊8M4(2) | φ: C4×S3/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).46(C4xS3) | 432,434 |
(C3×C6).47(C4×S3) = C33⋊9M4(2) | φ: C4×S3/C6 → C22 ⊆ Aut C3×C6 | 72 | | (C3xC6).47(C4xS3) | 432,435 |
(C3×C6).48(C4×S3) = Dic3×C3⋊Dic3 | φ: C4×S3/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).48(C4xS3) | 432,448 |
(C3×C6).49(C4×S3) = C62.78D6 | φ: C4×S3/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).49(C4xS3) | 432,450 |
(C3×C6).50(C4×S3) = C62.79D6 | φ: C4×S3/C6 → C22 ⊆ Aut C3×C6 | 72 | | (C3xC6).50(C4xS3) | 432,451 |
(C3×C6).51(C4×S3) = C62.81D6 | φ: C4×S3/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).51(C4xS3) | 432,453 |
(C3×C6).52(C4×S3) = C62.82D6 | φ: C4×S3/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).52(C4xS3) | 432,454 |
(C3×C6).53(C4×S3) = C12.93S32 | φ: C4×S3/C6 → C22 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).53(C4xS3) | 432,455 |
(C3×C6).54(C4×S3) = C33⋊10M4(2) | φ: C4×S3/C6 → C22 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).54(C4xS3) | 432,456 |
(C3×C6).55(C4×S3) = C33⋊6C42 | φ: C4×S3/C6 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).55(C4xS3) | 432,460 |
(C3×C6).56(C4×S3) = C62.84D6 | φ: C4×S3/C6 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).56(C4xS3) | 432,461 |
(C3×C6).57(C4×S3) = C62.85D6 | φ: C4×S3/C6 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).57(C4xS3) | 432,462 |
(C3×C6).58(C4×S3) = C3×C12.29D6 | φ: C4×S3/Dic3 → C2 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).58(C4xS3) | 432,415 |
(C3×C6).59(C4×S3) = C3×C12.31D6 | φ: C4×S3/Dic3 → C2 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).59(C4xS3) | 432,417 |
(C3×C6).60(C4×S3) = C3×Dic32 | φ: C4×S3/Dic3 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).60(C4xS3) | 432,425 |
(C3×C6).61(C4×S3) = C3×C6.D12 | φ: C4×S3/Dic3 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).61(C4xS3) | 432,427 |
(C3×C6).62(C4×S3) = C3×C62.C22 | φ: C4×S3/Dic3 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).62(C4xS3) | 432,429 |
(C3×C6).63(C4×S3) = D9×C24 | φ: C4×S3/C12 → C2 ⊆ Aut C3×C6 | 144 | 2 | (C3xC6).63(C4xS3) | 432,105 |
(C3×C6).64(C4×S3) = C3×C8⋊D9 | φ: C4×S3/C12 → C2 ⊆ Aut C3×C6 | 144 | 2 | (C3xC6).64(C4xS3) | 432,106 |
(C3×C6).65(C4×S3) = C12×Dic9 | φ: C4×S3/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).65(C4xS3) | 432,128 |
(C3×C6).66(C4×S3) = C3×Dic9⋊C4 | φ: C4×S3/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).66(C4xS3) | 432,129 |
(C3×C6).67(C4×S3) = C3×D18⋊C4 | φ: C4×S3/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).67(C4xS3) | 432,134 |
(C3×C6).68(C4×S3) = C8×C9⋊S3 | φ: C4×S3/C12 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).68(C4xS3) | 432,169 |
(C3×C6).69(C4×S3) = C72⋊S3 | φ: C4×S3/C12 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).69(C4xS3) | 432,170 |
(C3×C6).70(C4×S3) = C4×C9⋊Dic3 | φ: C4×S3/C12 → C2 ⊆ Aut C3×C6 | 432 | | (C3xC6).70(C4xS3) | 432,180 |
(C3×C6).71(C4×S3) = C6.Dic18 | φ: C4×S3/C12 → C2 ⊆ Aut C3×C6 | 432 | | (C3xC6).71(C4xS3) | 432,181 |
(C3×C6).72(C4×S3) = C6.11D36 | φ: C4×S3/C12 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).72(C4xS3) | 432,183 |
(C3×C6).73(C4×S3) = D9×C2×C12 | φ: C4×S3/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).73(C4xS3) | 432,342 |
(C3×C6).74(C4×S3) = C2×C4×C9⋊S3 | φ: C4×S3/C12 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).74(C4xS3) | 432,381 |
(C3×C6).75(C4×S3) = C3⋊S3×C24 | φ: C4×S3/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).75(C4xS3) | 432,480 |
(C3×C6).76(C4×S3) = C3×C24⋊S3 | φ: C4×S3/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).76(C4xS3) | 432,481 |
(C3×C6).77(C4×S3) = C12×C3⋊Dic3 | φ: C4×S3/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).77(C4xS3) | 432,487 |
(C3×C6).78(C4×S3) = C3×C6.Dic6 | φ: C4×S3/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).78(C4xS3) | 432,488 |
(C3×C6).79(C4×S3) = C3×C6.11D12 | φ: C4×S3/C12 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).79(C4xS3) | 432,490 |
(C3×C6).80(C4×S3) = C8×C33⋊C2 | φ: C4×S3/C12 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).80(C4xS3) | 432,496 |
(C3×C6).81(C4×S3) = C33⋊15M4(2) | φ: C4×S3/C12 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).81(C4xS3) | 432,497 |
(C3×C6).82(C4×S3) = C4×C33⋊5C4 | φ: C4×S3/C12 → C2 ⊆ Aut C3×C6 | 432 | | (C3xC6).82(C4xS3) | 432,503 |
(C3×C6).83(C4×S3) = C62.146D6 | φ: C4×S3/C12 → C2 ⊆ Aut C3×C6 | 432 | | (C3xC6).83(C4xS3) | 432,504 |
(C3×C6).84(C4×S3) = C62.148D6 | φ: C4×S3/C12 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).84(C4xS3) | 432,506 |
(C3×C6).85(C4×S3) = C3×S3×C3⋊C8 | φ: C4×S3/D6 → C2 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).85(C4xS3) | 432,414 |
(C3×C6).86(C4×S3) = C3×D6.Dic3 | φ: C4×S3/D6 → C2 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).86(C4xS3) | 432,416 |
(C3×C6).87(C4×S3) = C3×D6⋊Dic3 | φ: C4×S3/D6 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).87(C4xS3) | 432,426 |
(C3×C6).88(C4×S3) = C3×Dic3⋊Dic3 | φ: C4×S3/D6 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).88(C4xS3) | 432,428 |
(C3×C6).89(C4×S3) = S3×C32⋊4C8 | φ: C4×S3/D6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).89(C4xS3) | 432,430 |
(C3×C6).90(C4×S3) = C33⋊7M4(2) | φ: C4×S3/D6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).90(C4xS3) | 432,433 |
(C3×C6).91(C4×S3) = C62.77D6 | φ: C4×S3/D6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).91(C4xS3) | 432,449 |
(C3×C6).92(C4×S3) = C62.80D6 | φ: C4×S3/D6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).92(C4xS3) | 432,452 |
(C3×C6).93(C4×S3) = S3×C3×C24 | central extension (φ=1) | 144 | | (C3xC6).93(C4xS3) | 432,464 |
(C3×C6).94(C4×S3) = C32×C8⋊S3 | central extension (φ=1) | 144 | | (C3xC6).94(C4xS3) | 432,465 |
(C3×C6).95(C4×S3) = Dic3×C3×C12 | central extension (φ=1) | 144 | | (C3xC6).95(C4xS3) | 432,471 |
(C3×C6).96(C4×S3) = C32×Dic3⋊C4 | central extension (φ=1) | 144 | | (C3xC6).96(C4xS3) | 432,472 |
(C3×C6).97(C4×S3) = C32×D6⋊C4 | central extension (φ=1) | 144 | | (C3xC6).97(C4xS3) | 432,474 |