extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C12).1D6 = He3⋊3SD16 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 6 | (C3xC12).1D6 | 432,78 |
(C3×C12).2D6 = He3⋊2D8 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 6+ | (C3xC12).2D6 | 432,79 |
(C3×C12).3D6 = He3⋊2Q16 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 144 | 6- | (C3xC12).3D6 | 432,80 |
(C3×C12).4D6 = He3⋊3D8 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 12+ | (C3xC12).4D6 | 432,83 |
(C3×C12).5D6 = He3⋊4SD16 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 12- | (C3xC12).5D6 | 432,84 |
(C3×C12).6D6 = He3⋊5SD16 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 12+ | (C3xC12).6D6 | 432,85 |
(C3×C12).7D6 = He3⋊3Q16 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 144 | 12- | (C3xC12).7D6 | 432,86 |
(C3×C12).8D6 = He3⋊8SD16 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 12- | (C3xC12).8D6 | 432,152 |
(C3×C12).9D6 = He3⋊6D8 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 12+ | (C3xC12).9D6 | 432,153 |
(C3×C12).10D6 = Dic18⋊C6 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 12- | (C3xC12).10D6 | 432,154 |
(C3×C12).11D6 = D36⋊C6 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 12+ | (C3xC12).11D6 | 432,155 |
(C3×C12).12D6 = He3⋊6Q16 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 144 | 12- | (C3xC12).12D6 | 432,160 |
(C3×C12).13D6 = He3⋊10SD16 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 12+ | (C3xC12).13D6 | 432,161 |
(C3×C12).14D6 = Dic18.C6 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 144 | 12- | (C3xC12).14D6 | 432,162 |
(C3×C12).15D6 = D36.C6 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 12+ | (C3xC12).15D6 | 432,163 |
(C3×C12).16D6 = He3⋊7D8 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 6 | (C3xC12).16D6 | 432,192 |
(C3×C12).17D6 = He3⋊9SD16 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 6 | (C3xC12).17D6 | 432,193 |
(C3×C12).18D6 = He3⋊11SD16 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 6 | (C3xC12).18D6 | 432,196 |
(C3×C12).19D6 = He3⋊7Q16 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 144 | 6 | (C3xC12).19D6 | 432,197 |
(C3×C12).20D6 = C3⋊S3⋊Dic6 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 12- | (C3xC12).20D6 | 432,294 |
(C3×C12).21D6 = C12⋊S3⋊S3 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 12+ | (C3xC12).21D6 | 432,295 |
(C3×C12).22D6 = C12.84S32 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 6 | (C3xC12).22D6 | 432,296 |
(C3×C12).23D6 = C12.85S32 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 6- | (C3xC12).23D6 | 432,298 |
(C3×C12).24D6 = C12.S32 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 12- | (C3xC12).24D6 | 432,299 |
(C3×C12).25D6 = C62.13D6 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 12- | (C3xC12).25D6 | 432,361 |
(C3×C12).26D6 = D4×C9⋊C6 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 36 | 12+ | (C3xC12).26D6 | 432,362 |
(C3×C12).27D6 = Dic18⋊2C6 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 12- | (C3xC12).27D6 | 432,363 |
(C3×C12).28D6 = Q8×C32⋊C6 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 12- | (C3xC12).28D6 | 432,368 |
(C3×C12).29D6 = (Q8×He3)⋊C2 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 12+ | (C3xC12).29D6 | 432,369 |
(C3×C12).30D6 = Q8×C9⋊C6 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 12- | (C3xC12).30D6 | 432,370 |
(C3×C12).31D6 = D36⋊3C6 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 12+ | (C3xC12).31D6 | 432,371 |
(C3×C12).32D6 = C62.16D6 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 6 | (C3xC12).32D6 | 432,391 |
(C3×C12).33D6 = Q8×He3⋊C2 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 6 | (C3xC12).33D6 | 432,394 |
(C3×C12).34D6 = He3⋊5D4⋊C2 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 6 | (C3xC12).34D6 | 432,395 |
(C3×C12).35D6 = C32⋊C6⋊C8 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 6 | (C3xC12).35D6 | 432,76 |
(C3×C12).36D6 = He3⋊M4(2) | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 6 | (C3xC12).36D6 | 432,77 |
(C3×C12).37D6 = C12.89S32 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 6 | (C3xC12).37D6 | 432,81 |
(C3×C12).38D6 = He3⋊3M4(2) | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 6 | (C3xC12).38D6 | 432,82 |
(C3×C12).39D6 = C12.91S32 | φ: D6/C1 → D6 ⊆ Aut C3×C12 | 72 | 6 | (C3xC12).39D6 | 432,297 |
(C3×C12).40D6 = He3⋊4Q16 | φ: D6/C2 → S3 ⊆ Aut C3×C12 | 144 | 6- | (C3xC12).40D6 | 432,114 |
(C3×C12).41D6 = He3⋊6SD16 | φ: D6/C2 → S3 ⊆ Aut C3×C12 | 72 | 6 | (C3xC12).41D6 | 432,117 |
(C3×C12).42D6 = He3⋊4D8 | φ: D6/C2 → S3 ⊆ Aut C3×C12 | 72 | 6+ | (C3xC12).42D6 | 432,118 |
(C3×C12).43D6 = C72.C6 | φ: D6/C2 → S3 ⊆ Aut C3×C12 | 144 | 6- | (C3xC12).43D6 | 432,119 |
(C3×C12).44D6 = C72⋊2C6 | φ: D6/C2 → S3 ⊆ Aut C3×C12 | 72 | 6 | (C3xC12).44D6 | 432,122 |
(C3×C12).45D6 = D72⋊C3 | φ: D6/C2 → S3 ⊆ Aut C3×C12 | 72 | 6+ | (C3xC12).45D6 | 432,123 |
(C3×C12).46D6 = He3⋊7SD16 | φ: D6/C2 → S3 ⊆ Aut C3×C12 | 72 | 6 | (C3xC12).46D6 | 432,175 |
(C3×C12).47D6 = He3⋊5D8 | φ: D6/C2 → S3 ⊆ Aut C3×C12 | 72 | 6 | (C3xC12).47D6 | 432,176 |
(C3×C12).48D6 = He3⋊5Q16 | φ: D6/C2 → S3 ⊆ Aut C3×C12 | 144 | 6 | (C3xC12).48D6 | 432,177 |
(C3×C12).49D6 = C2×He3⋊3Q8 | φ: D6/C2 → S3 ⊆ Aut C3×C12 | 144 | | (C3xC12).49D6 | 432,348 |
(C3×C12).50D6 = C62.36D6 | φ: D6/C2 → S3 ⊆ Aut C3×C12 | 72 | 6 | (C3xC12).50D6 | 432,351 |
(C3×C12).51D6 = C2×C36.C6 | φ: D6/C2 → S3 ⊆ Aut C3×C12 | 144 | | (C3xC12).51D6 | 432,352 |
(C3×C12).52D6 = C2×D36⋊C3 | φ: D6/C2 → S3 ⊆ Aut C3×C12 | 72 | | (C3xC12).52D6 | 432,354 |
(C3×C12).53D6 = D36⋊6C6 | φ: D6/C2 → S3 ⊆ Aut C3×C12 | 72 | 6 | (C3xC12).53D6 | 432,355 |
(C3×C12).54D6 = C2×He3⋊4Q8 | φ: D6/C2 → S3 ⊆ Aut C3×C12 | 144 | | (C3xC12).54D6 | 432,384 |
(C3×C12).55D6 = C62.47D6 | φ: D6/C2 → S3 ⊆ Aut C3×C12 | 72 | 6 | (C3xC12).55D6 | 432,387 |
(C3×C12).56D6 = C8×C32⋊C6 | φ: D6/C2 → S3 ⊆ Aut C3×C12 | 72 | 6 | (C3xC12).56D6 | 432,115 |
(C3×C12).57D6 = He3⋊5M4(2) | φ: D6/C2 → S3 ⊆ Aut C3×C12 | 72 | 6 | (C3xC12).57D6 | 432,116 |
(C3×C12).58D6 = C8×C9⋊C6 | φ: D6/C2 → S3 ⊆ Aut C3×C12 | 72 | 6 | (C3xC12).58D6 | 432,120 |
(C3×C12).59D6 = C72⋊C6 | φ: D6/C2 → S3 ⊆ Aut C3×C12 | 72 | 6 | (C3xC12).59D6 | 432,121 |
(C3×C12).60D6 = C2×He3⋊3C8 | φ: D6/C2 → S3 ⊆ Aut C3×C12 | 144 | | (C3xC12).60D6 | 432,136 |
(C3×C12).61D6 = He3⋊7M4(2) | φ: D6/C2 → S3 ⊆ Aut C3×C12 | 72 | 6 | (C3xC12).61D6 | 432,137 |
(C3×C12).62D6 = C2×C9⋊C24 | φ: D6/C2 → S3 ⊆ Aut C3×C12 | 144 | | (C3xC12).62D6 | 432,142 |
(C3×C12).63D6 = C36.C12 | φ: D6/C2 → S3 ⊆ Aut C3×C12 | 72 | 6 | (C3xC12).63D6 | 432,143 |
(C3×C12).64D6 = C8×He3⋊C2 | φ: D6/C2 → S3 ⊆ Aut C3×C12 | 72 | 3 | (C3xC12).64D6 | 432,173 |
(C3×C12).65D6 = He3⋊6M4(2) | φ: D6/C2 → S3 ⊆ Aut C3×C12 | 72 | 6 | (C3xC12).65D6 | 432,174 |
(C3×C12).66D6 = C2×He3⋊4C8 | φ: D6/C2 → S3 ⊆ Aut C3×C12 | 144 | | (C3xC12).66D6 | 432,184 |
(C3×C12).67D6 = He3⋊8M4(2) | φ: D6/C2 → S3 ⊆ Aut C3×C12 | 72 | 6 | (C3xC12).67D6 | 432,185 |
(C3×C12).68D6 = C2×C4×C9⋊C6 | φ: D6/C2 → S3 ⊆ Aut C3×C12 | 72 | | (C3xC12).68D6 | 432,353 |
(C3×C12).69D6 = D36.S3 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | 4- | (C3xC12).69D6 | 432,62 |
(C3×C12).70D6 = C6.D36 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | 4+ | (C3xC12).70D6 | 432,63 |
(C3×C12).71D6 = C3⋊D72 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | 4+ | (C3xC12).71D6 | 432,64 |
(C3×C12).72D6 = C3⋊Dic36 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | 4- | (C3xC12).72D6 | 432,65 |
(C3×C12).73D6 = D36⋊S3 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | 4 | (C3xC12).73D6 | 432,68 |
(C3×C12).74D6 = C9⋊D24 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | 4+ | (C3xC12).74D6 | 432,69 |
(C3×C12).75D6 = D12.D9 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | 4 | (C3xC12).75D6 | 432,70 |
(C3×C12).76D6 = C36.D6 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | 4- | (C3xC12).76D6 | 432,71 |
(C3×C12).77D6 = Dic6⋊D9 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | 4 | (C3xC12).77D6 | 432,72 |
(C3×C12).78D6 = C18.D12 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | 4+ | (C3xC12).78D6 | 432,73 |
(C3×C12).79D6 = C12.D18 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | 4 | (C3xC12).79D6 | 432,74 |
(C3×C12).80D6 = C9⋊Dic12 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | 4- | (C3xC12).80D6 | 432,75 |
(C3×C12).81D6 = C3×D4.D9 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | 4 | (C3xC12).81D6 | 432,148 |
(C3×C12).82D6 = C3×D4⋊D9 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | 4 | (C3xC12).82D6 | 432,149 |
(C3×C12).83D6 = C3×C9⋊Q16 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | 4 | (C3xC12).83D6 | 432,156 |
(C3×C12).84D6 = C3×Q8⋊2D9 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | 4 | (C3xC12).84D6 | 432,157 |
(C3×C12).85D6 = C36.17D6 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 216 | | (C3xC12).85D6 | 432,190 |
(C3×C12).86D6 = C36.18D6 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 216 | | (C3xC12).86D6 | 432,191 |
(C3×C12).87D6 = C36.19D6 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 432 | | (C3xC12).87D6 | 432,194 |
(C3×C12).88D6 = C36.20D6 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 216 | | (C3xC12).88D6 | 432,195 |
(C3×C12).89D6 = D9×Dic6 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | 4- | (C3xC12).89D6 | 432,280 |
(C3×C12).90D6 = D18.D6 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | 4 | (C3xC12).90D6 | 432,281 |
(C3×C12).91D6 = Dic6⋊5D9 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | 4+ | (C3xC12).91D6 | 432,282 |
(C3×C12).92D6 = Dic18⋊S3 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | 4 | (C3xC12).92D6 | 432,283 |
(C3×C12).93D6 = S3×Dic18 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | 4- | (C3xC12).93D6 | 432,284 |
(C3×C12).94D6 = D12⋊5D9 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | 4- | (C3xC12).94D6 | 432,285 |
(C3×C12).95D6 = D12⋊D9 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | 4 | (C3xC12).95D6 | 432,286 |
(C3×C12).96D6 = D36⋊5S3 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | 4- | (C3xC12).96D6 | 432,288 |
(C3×C12).97D6 = Dic9.D6 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | 4+ | (C3xC12).97D6 | 432,289 |
(C3×C12).98D6 = S3×D36 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | 4+ | (C3xC12).98D6 | 432,291 |
(C3×C12).99D6 = D9×D12 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | 4+ | (C3xC12).99D6 | 432,292 |
(C3×C12).100D6 = C36⋊D6 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | 4 | (C3xC12).100D6 | 432,293 |
(C3×C12).101D6 = C3×D4×D9 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | 4 | (C3xC12).101D6 | 432,356 |
(C3×C12).102D6 = C3×D4⋊2D9 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | 4 | (C3xC12).102D6 | 432,357 |
(C3×C12).103D6 = C3×Q8×D9 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | 4 | (C3xC12).103D6 | 432,364 |
(C3×C12).104D6 = C3×Q8⋊3D9 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | 4 | (C3xC12).104D6 | 432,365 |
(C3×C12).105D6 = D4×C9⋊S3 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 108 | | (C3xC12).105D6 | 432,388 |
(C3×C12).106D6 = C36.27D6 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 216 | | (C3xC12).106D6 | 432,389 |
(C3×C12).107D6 = Q8×C9⋊S3 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 216 | | (C3xC12).107D6 | 432,392 |
(C3×C12).108D6 = C36.29D6 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 216 | | (C3xC12).108D6 | 432,393 |
(C3×C12).109D6 = C3×C32⋊2D8 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 48 | 4 | (C3xC12).109D6 | 432,418 |
(C3×C12).110D6 = C3×Dic6⋊S3 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 48 | 4 | (C3xC12).110D6 | 432,420 |
(C3×C12).111D6 = C3×C32⋊2Q16 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 48 | 4 | (C3xC12).111D6 | 432,423 |
(C3×C12).112D6 = C33⋊6D8 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | | (C3xC12).112D6 | 432,436 |
(C3×C12).113D6 = C33⋊7D8 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | | (C3xC12).113D6 | 432,437 |
(C3×C12).114D6 = C33⋊8D8 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | | (C3xC12).114D6 | 432,438 |
(C3×C12).115D6 = C33⋊12SD16 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | | (C3xC12).115D6 | 432,439 |
(C3×C12).116D6 = C33⋊13SD16 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | | (C3xC12).116D6 | 432,440 |
(C3×C12).117D6 = C33⋊14SD16 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | | (C3xC12).117D6 | 432,441 |
(C3×C12).118D6 = C33⋊15SD16 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | | (C3xC12).118D6 | 432,442 |
(C3×C12).119D6 = C33⋊16SD16 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | | (C3xC12).119D6 | 432,443 |
(C3×C12).120D6 = C33⋊17SD16 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | | (C3xC12).120D6 | 432,444 |
(C3×C12).121D6 = C33⋊6Q16 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | | (C3xC12).121D6 | 432,445 |
(C3×C12).122D6 = C33⋊7Q16 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | | (C3xC12).122D6 | 432,446 |
(C3×C12).123D6 = C33⋊8Q16 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | | (C3xC12).123D6 | 432,447 |
(C3×C12).124D6 = C33⋊9D8 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 48 | 4 | (C3xC12).124D6 | 432,457 |
(C3×C12).125D6 = C33⋊18SD16 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 48 | 4 | (C3xC12).125D6 | 432,458 |
(C3×C12).126D6 = C33⋊9Q16 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 48 | 4 | (C3xC12).126D6 | 432,459 |
(C3×C12).127D6 = C3×C32⋊7D8 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | | (C3xC12).127D6 | 432,491 |
(C3×C12).128D6 = C3×C32⋊9SD16 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | | (C3xC12).128D6 | 432,492 |
(C3×C12).129D6 = C3×C32⋊11SD16 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | | (C3xC12).129D6 | 432,493 |
(C3×C12).130D6 = C3×C32⋊7Q16 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | | (C3xC12).130D6 | 432,494 |
(C3×C12).131D6 = C33⋊15D8 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 216 | | (C3xC12).131D6 | 432,507 |
(C3×C12).132D6 = C33⋊24SD16 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 216 | | (C3xC12).132D6 | 432,508 |
(C3×C12).133D6 = C33⋊27SD16 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 216 | | (C3xC12).133D6 | 432,509 |
(C3×C12).134D6 = C33⋊15Q16 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 432 | | (C3xC12).134D6 | 432,510 |
(C3×C12).135D6 = C3×D12⋊5S3 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 48 | 4 | (C3xC12).135D6 | 432,643 |
(C3×C12).136D6 = C3×D12⋊S3 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 48 | 4 | (C3xC12).136D6 | 432,644 |
(C3×C12).137D6 = C3×Dic3.D6 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 48 | 4 | (C3xC12).137D6 | 432,645 |
(C3×C12).138D6 = S3×C32⋊4Q8 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | | (C3xC12).138D6 | 432,660 |
(C3×C12).139D6 = (C3×D12)⋊S3 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | | (C3xC12).139D6 | 432,661 |
(C3×C12).140D6 = D12⋊(C3⋊S3) | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | | (C3xC12).140D6 | 432,662 |
(C3×C12).141D6 = C3⋊S3×Dic6 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | | (C3xC12).141D6 | 432,663 |
(C3×C12).142D6 = C12.39S32 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | | (C3xC12).142D6 | 432,664 |
(C3×C12).143D6 = C12.40S32 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | | (C3xC12).143D6 | 432,665 |
(C3×C12).144D6 = C32⋊9(S3×Q8) | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | | (C3xC12).144D6 | 432,666 |
(C3×C12).145D6 = C12.57S32 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | | (C3xC12).145D6 | 432,668 |
(C3×C12).146D6 = C12.58S32 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | | (C3xC12).146D6 | 432,669 |
(C3×C12).147D6 = C3⋊S3⋊4Dic6 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 48 | 4 | (C3xC12).147D6 | 432,687 |
(C3×C12).148D6 = C12⋊S3⋊12S3 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 48 | 4 | (C3xC12).148D6 | 432,688 |
(C3×C12).149D6 = C3×C12.D6 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | | (C3xC12).149D6 | 432,715 |
(C3×C12).150D6 = C3×Q8×C3⋊S3 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | | (C3xC12).150D6 | 432,716 |
(C3×C12).151D6 = C3×C12.26D6 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | | (C3xC12).151D6 | 432,717 |
(C3×C12).152D6 = C62.100D6 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 216 | | (C3xC12).152D6 | 432,725 |
(C3×C12).153D6 = Q8×C33⋊C2 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 216 | | (C3xC12).153D6 | 432,726 |
(C3×C12).154D6 = (Q8×C33)⋊C2 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 216 | | (C3xC12).154D6 | 432,727 |
(C3×C12).155D6 = D9×C3⋊C8 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | 4 | (C3xC12).155D6 | 432,58 |
(C3×C12).156D6 = C36.38D6 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | 4 | (C3xC12).156D6 | 432,59 |
(C3×C12).157D6 = C36.39D6 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | 4 | (C3xC12).157D6 | 432,60 |
(C3×C12).158D6 = C36.40D6 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | 4 | (C3xC12).158D6 | 432,61 |
(C3×C12).159D6 = S3×C9⋊C8 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | 4 | (C3xC12).159D6 | 432,66 |
(C3×C12).160D6 = D6.Dic9 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | 4 | (C3xC12).160D6 | 432,67 |
(C3×C12).161D6 = D6.D18 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | 4 | (C3xC12).161D6 | 432,287 |
(C3×C12).162D6 = C4×S3×D9 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | 4 | (C3xC12).162D6 | 432,290 |
(C3×C12).163D6 = C3⋊S3×C3⋊C8 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | | (C3xC12).163D6 | 432,431 |
(C3×C12).164D6 = C12.69S32 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | | (C3xC12).164D6 | 432,432 |
(C3×C12).165D6 = C33⋊7M4(2) | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | | (C3xC12).165D6 | 432,433 |
(C3×C12).166D6 = C33⋊8M4(2) | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 144 | | (C3xC12).166D6 | 432,434 |
(C3×C12).167D6 = C33⋊9M4(2) | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | | (C3xC12).167D6 | 432,435 |
(C3×C12).168D6 = C12.93S32 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 48 | 4 | (C3xC12).168D6 | 432,455 |
(C3×C12).169D6 = C33⋊10M4(2) | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 48 | 4 | (C3xC12).169D6 | 432,456 |
(C3×C12).170D6 = C12.73S32 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 72 | | (C3xC12).170D6 | 432,667 |
(C3×C12).171D6 = C12.95S32 | φ: D6/C3 → C22 ⊆ Aut C3×C12 | 48 | 4 | (C3xC12).171D6 | 432,689 |
(C3×C12).172D6 = C3×C3⋊D24 | φ: D6/S3 → C2 ⊆ Aut C3×C12 | 48 | 4 | (C3xC12).172D6 | 432,419 |
(C3×C12).173D6 = C3×D12.S3 | φ: D6/S3 → C2 ⊆ Aut C3×C12 | 48 | 4 | (C3xC12).173D6 | 432,421 |
(C3×C12).174D6 = C3×C32⋊5SD16 | φ: D6/S3 → C2 ⊆ Aut C3×C12 | 48 | 4 | (C3xC12).174D6 | 432,422 |
(C3×C12).175D6 = C3×C32⋊3Q16 | φ: D6/S3 → C2 ⊆ Aut C3×C12 | 48 | 4 | (C3xC12).175D6 | 432,424 |
(C3×C12).176D6 = C3×S3×Dic6 | φ: D6/S3 → C2 ⊆ Aut C3×C12 | 48 | 4 | (C3xC12).176D6 | 432,642 |
(C3×C12).177D6 = C3×D6.6D6 | φ: D6/S3 → C2 ⊆ Aut C3×C12 | 48 | 4 | (C3xC12).177D6 | 432,647 |
(C3×C12).178D6 = C3×S3×C3⋊C8 | φ: D6/S3 → C2 ⊆ Aut C3×C12 | 48 | 4 | (C3xC12).178D6 | 432,414 |
(C3×C12).179D6 = C3×C12.29D6 | φ: D6/S3 → C2 ⊆ Aut C3×C12 | 48 | 4 | (C3xC12).179D6 | 432,415 |
(C3×C12).180D6 = C3×D6.Dic3 | φ: D6/S3 → C2 ⊆ Aut C3×C12 | 48 | 4 | (C3xC12).180D6 | 432,416 |
(C3×C12).181D6 = C3×C12.31D6 | φ: D6/S3 → C2 ⊆ Aut C3×C12 | 48 | 4 | (C3xC12).181D6 | 432,417 |
(C3×C12).182D6 = S3×C32⋊4C8 | φ: D6/S3 → C2 ⊆ Aut C3×C12 | 144 | | (C3xC12).182D6 | 432,430 |
(C3×C12).183D6 = C3×D6.D6 | φ: D6/S3 → C2 ⊆ Aut C3×C12 | 48 | 4 | (C3xC12).183D6 | 432,646 |
(C3×C12).184D6 = C32×D4⋊S3 | φ: D6/S3 → C2 ⊆ Aut C3×C12 | 72 | | (C3xC12).184D6 | 432,475 |
(C3×C12).185D6 = C32×D4.S3 | φ: D6/S3 → C2 ⊆ Aut C3×C12 | 72 | | (C3xC12).185D6 | 432,476 |
(C3×C12).186D6 = C32×Q8⋊2S3 | φ: D6/S3 → C2 ⊆ Aut C3×C12 | 144 | | (C3xC12).186D6 | 432,477 |
(C3×C12).187D6 = C32×C3⋊Q16 | φ: D6/S3 → C2 ⊆ Aut C3×C12 | 144 | | (C3xC12).187D6 | 432,478 |
(C3×C12).188D6 = C32×D4⋊2S3 | φ: D6/S3 → C2 ⊆ Aut C3×C12 | 72 | | (C3xC12).188D6 | 432,705 |
(C3×C12).189D6 = S3×Q8×C32 | φ: D6/S3 → C2 ⊆ Aut C3×C12 | 144 | | (C3xC12).189D6 | 432,706 |
(C3×C12).190D6 = C32×Q8⋊3S3 | φ: D6/S3 → C2 ⊆ Aut C3×C12 | 144 | | (C3xC12).190D6 | 432,707 |
(C3×C12).191D6 = C24.D9 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 432 | | (C3xC12).191D6 | 432,168 |
(C3×C12).192D6 = C24⋊D9 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 216 | | (C3xC12).192D6 | 432,171 |
(C3×C12).193D6 = C72⋊1S3 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 216 | | (C3xC12).193D6 | 432,172 |
(C3×C12).194D6 = C2×C12.D9 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 432 | | (C3xC12).194D6 | 432,380 |
(C3×C12).195D6 = C2×C36⋊S3 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 216 | | (C3xC12).195D6 | 432,382 |
(C3×C12).196D6 = C36.70D6 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 216 | | (C3xC12).196D6 | 432,383 |
(C3×C12).197D6 = C33⋊21SD16 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 216 | | (C3xC12).197D6 | 432,498 |
(C3×C12).198D6 = C33⋊12D8 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 216 | | (C3xC12).198D6 | 432,499 |
(C3×C12).199D6 = C33⋊12Q16 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 432 | | (C3xC12).199D6 | 432,500 |
(C3×C12).200D6 = C2×C33⋊8Q8 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 432 | | (C3xC12).200D6 | 432,720 |
(C3×C12).201D6 = C62.160D6 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 216 | | (C3xC12).201D6 | 432,723 |
(C3×C12).202D6 = C3×Dic36 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 144 | 2 | (C3xC12).202D6 | 432,104 |
(C3×C12).203D6 = C3×C72⋊C2 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 144 | 2 | (C3xC12).203D6 | 432,107 |
(C3×C12).204D6 = C3×D72 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 144 | 2 | (C3xC12).204D6 | 432,108 |
(C3×C12).205D6 = C6×Dic18 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 144 | | (C3xC12).205D6 | 432,340 |
(C3×C12).206D6 = C6×D36 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 144 | | (C3xC12).206D6 | 432,343 |
(C3×C12).207D6 = C3×C24⋊2S3 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 144 | | (C3xC12).207D6 | 432,482 |
(C3×C12).208D6 = C3×C32⋊5D8 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 144 | | (C3xC12).208D6 | 432,483 |
(C3×C12).209D6 = C3×C32⋊5Q16 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 144 | | (C3xC12).209D6 | 432,484 |
(C3×C12).210D6 = C6×C32⋊4Q8 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 144 | | (C3xC12).210D6 | 432,710 |
(C3×C12).211D6 = C3×C12.59D6 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 72 | | (C3xC12).211D6 | 432,713 |
(C3×C12).212D6 = D9×C24 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 144 | 2 | (C3xC12).212D6 | 432,105 |
(C3×C12).213D6 = C3×C8⋊D9 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 144 | 2 | (C3xC12).213D6 | 432,106 |
(C3×C12).214D6 = C6×C9⋊C8 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 144 | | (C3xC12).214D6 | 432,124 |
(C3×C12).215D6 = C3×C4.Dic9 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 72 | 2 | (C3xC12).215D6 | 432,125 |
(C3×C12).216D6 = C8×C9⋊S3 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 216 | | (C3xC12).216D6 | 432,169 |
(C3×C12).217D6 = C72⋊S3 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 216 | | (C3xC12).217D6 | 432,170 |
(C3×C12).218D6 = C2×C36.S3 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 432 | | (C3xC12).218D6 | 432,178 |
(C3×C12).219D6 = C36.69D6 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 216 | | (C3xC12).219D6 | 432,179 |
(C3×C12).220D6 = D9×C2×C12 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 144 | | (C3xC12).220D6 | 432,342 |
(C3×C12).221D6 = C3×D36⋊5C2 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 72 | 2 | (C3xC12).221D6 | 432,344 |
(C3×C12).222D6 = C2×C4×C9⋊S3 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 216 | | (C3xC12).222D6 | 432,381 |
(C3×C12).223D6 = C3⋊S3×C24 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 144 | | (C3xC12).223D6 | 432,480 |
(C3×C12).224D6 = C3×C24⋊S3 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 144 | | (C3xC12).224D6 | 432,481 |
(C3×C12).225D6 = C6×C32⋊4C8 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 144 | | (C3xC12).225D6 | 432,485 |
(C3×C12).226D6 = C3×C12.58D6 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 72 | | (C3xC12).226D6 | 432,486 |
(C3×C12).227D6 = C8×C33⋊C2 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 216 | | (C3xC12).227D6 | 432,496 |
(C3×C12).228D6 = C33⋊15M4(2) | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 216 | | (C3xC12).228D6 | 432,497 |
(C3×C12).229D6 = C2×C33⋊7C8 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 432 | | (C3xC12).229D6 | 432,501 |
(C3×C12).230D6 = C33⋊18M4(2) | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 216 | | (C3xC12).230D6 | 432,502 |
(C3×C12).231D6 = C32×C24⋊C2 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 144 | | (C3xC12).231D6 | 432,466 |
(C3×C12).232D6 = C32×D24 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 144 | | (C3xC12).232D6 | 432,467 |
(C3×C12).233D6 = C32×Dic12 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 144 | | (C3xC12).233D6 | 432,468 |
(C3×C12).234D6 = C3×C6×Dic6 | φ: D6/C6 → C2 ⊆ Aut C3×C12 | 144 | | (C3xC12).234D6 | 432,700 |
(C3×C12).235D6 = S3×C3×C24 | central extension (φ=1) | 144 | | (C3xC12).235D6 | 432,464 |
(C3×C12).236D6 = C32×C8⋊S3 | central extension (φ=1) | 144 | | (C3xC12).236D6 | 432,465 |
(C3×C12).237D6 = C3×C6×C3⋊C8 | central extension (φ=1) | 144 | | (C3xC12).237D6 | 432,469 |
(C3×C12).238D6 = C32×C4.Dic3 | central extension (φ=1) | 72 | | (C3xC12).238D6 | 432,470 |
(C3×C12).239D6 = C32×C4○D12 | central extension (φ=1) | 72 | | (C3xC12).239D6 | 432,703 |