extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C6).1(C3⋊D4) = He3⋊3SD16 | φ: C3⋊D4/C2 → D6 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).1(C3:D4) | 432,78 |
(C3×C6).2(C3⋊D4) = He3⋊2D8 | φ: C3⋊D4/C2 → D6 ⊆ Aut C3×C6 | 72 | 6+ | (C3xC6).2(C3:D4) | 432,79 |
(C3×C6).3(C3⋊D4) = He3⋊2Q16 | φ: C3⋊D4/C2 → D6 ⊆ Aut C3×C6 | 144 | 6- | (C3xC6).3(C3:D4) | 432,80 |
(C3×C6).4(C3⋊D4) = He3⋊3D8 | φ: C3⋊D4/C2 → D6 ⊆ Aut C3×C6 | 72 | 12+ | (C3xC6).4(C3:D4) | 432,83 |
(C3×C6).5(C3⋊D4) = He3⋊4SD16 | φ: C3⋊D4/C2 → D6 ⊆ Aut C3×C6 | 72 | 12- | (C3xC6).5(C3:D4) | 432,84 |
(C3×C6).6(C3⋊D4) = He3⋊5SD16 | φ: C3⋊D4/C2 → D6 ⊆ Aut C3×C6 | 72 | 12+ | (C3xC6).6(C3:D4) | 432,85 |
(C3×C6).7(C3⋊D4) = He3⋊3Q16 | φ: C3⋊D4/C2 → D6 ⊆ Aut C3×C6 | 144 | 12- | (C3xC6).7(C3:D4) | 432,86 |
(C3×C6).8(C3⋊D4) = C62.D6 | φ: C3⋊D4/C2 → D6 ⊆ Aut C3×C6 | 144 | | (C3xC6).8(C3:D4) | 432,95 |
(C3×C6).9(C3⋊D4) = C62.3D6 | φ: C3⋊D4/C2 → D6 ⊆ Aut C3×C6 | 144 | | (C3xC6).9(C3:D4) | 432,96 |
(C3×C6).10(C3⋊D4) = C62.4D6 | φ: C3⋊D4/C2 → D6 ⊆ Aut C3×C6 | 72 | | (C3xC6).10(C3:D4) | 432,97 |
(C3×C6).11(C3⋊D4) = C62.5D6 | φ: C3⋊D4/C2 → D6 ⊆ Aut C3×C6 | 72 | | (C3xC6).11(C3:D4) | 432,98 |
(C3×C6).12(C3⋊D4) = C3⋊S3.2D12 | φ: C3⋊D4/C3 → D4 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).12(C3:D4) | 432,579 |
(C3×C6).13(C3⋊D4) = S32⋊Dic3 | φ: C3⋊D4/C3 → D4 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).13(C3:D4) | 432,580 |
(C3×C6).14(C3⋊D4) = C33⋊C4⋊C4 | φ: C3⋊D4/C3 → D4 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).14(C3:D4) | 432,581 |
(C3×C6).15(C3⋊D4) = C33⋊D8 | φ: C3⋊D4/C3 → D4 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).15(C3:D4) | 432,582 |
(C3×C6).16(C3⋊D4) = C33⋊6SD16 | φ: C3⋊D4/C3 → D4 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).16(C3:D4) | 432,583 |
(C3×C6).17(C3⋊D4) = C33⋊7SD16 | φ: C3⋊D4/C3 → D4 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).17(C3:D4) | 432,584 |
(C3×C6).18(C3⋊D4) = C33⋊Q16 | φ: C3⋊D4/C3 → D4 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).18(C3:D4) | 432,585 |
(C3×C6).19(C3⋊D4) = C62.19D6 | φ: C3⋊D4/C22 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).19(C3:D4) | 432,139 |
(C3×C6).20(C3⋊D4) = C62.21D6 | φ: C3⋊D4/C22 → S3 ⊆ Aut C3×C6 | 72 | | (C3xC6).20(C3:D4) | 432,141 |
(C3×C6).21(C3⋊D4) = Dic9⋊C12 | φ: C3⋊D4/C22 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).21(C3:D4) | 432,145 |
(C3×C6).22(C3⋊D4) = D18⋊C12 | φ: C3⋊D4/C22 → S3 ⊆ Aut C3×C6 | 72 | | (C3xC6).22(C3:D4) | 432,147 |
(C3×C6).23(C3⋊D4) = He3⋊8SD16 | φ: C3⋊D4/C22 → S3 ⊆ Aut C3×C6 | 72 | 12- | (C3xC6).23(C3:D4) | 432,152 |
(C3×C6).24(C3⋊D4) = He3⋊6D8 | φ: C3⋊D4/C22 → S3 ⊆ Aut C3×C6 | 72 | 12+ | (C3xC6).24(C3:D4) | 432,153 |
(C3×C6).25(C3⋊D4) = Dic18⋊C6 | φ: C3⋊D4/C22 → S3 ⊆ Aut C3×C6 | 72 | 12- | (C3xC6).25(C3:D4) | 432,154 |
(C3×C6).26(C3⋊D4) = D36⋊C6 | φ: C3⋊D4/C22 → S3 ⊆ Aut C3×C6 | 72 | 12+ | (C3xC6).26(C3:D4) | 432,155 |
(C3×C6).27(C3⋊D4) = He3⋊6Q16 | φ: C3⋊D4/C22 → S3 ⊆ Aut C3×C6 | 144 | 12- | (C3xC6).27(C3:D4) | 432,160 |
(C3×C6).28(C3⋊D4) = He3⋊10SD16 | φ: C3⋊D4/C22 → S3 ⊆ Aut C3×C6 | 72 | 12+ | (C3xC6).28(C3:D4) | 432,161 |
(C3×C6).29(C3⋊D4) = Dic18.C6 | φ: C3⋊D4/C22 → S3 ⊆ Aut C3×C6 | 144 | 12- | (C3xC6).29(C3:D4) | 432,162 |
(C3×C6).30(C3⋊D4) = D36.C6 | φ: C3⋊D4/C22 → S3 ⊆ Aut C3×C6 | 72 | 12+ | (C3xC6).30(C3:D4) | 432,163 |
(C3×C6).31(C3⋊D4) = C62⋊3C12 | φ: C3⋊D4/C22 → S3 ⊆ Aut C3×C6 | 72 | | (C3xC6).31(C3:D4) | 432,166 |
(C3×C6).32(C3⋊D4) = C62.27D6 | φ: C3⋊D4/C22 → S3 ⊆ Aut C3×C6 | 72 | | (C3xC6).32(C3:D4) | 432,167 |
(C3×C6).33(C3⋊D4) = C62.29D6 | φ: C3⋊D4/C22 → S3 ⊆ Aut C3×C6 | 144 | | (C3xC6).33(C3:D4) | 432,187 |
(C3×C6).34(C3⋊D4) = C62.31D6 | φ: C3⋊D4/C22 → S3 ⊆ Aut C3×C6 | 72 | | (C3xC6).34(C3:D4) | 432,189 |
(C3×C6).35(C3⋊D4) = He3⋊7D8 | φ: C3⋊D4/C22 → S3 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).35(C3:D4) | 432,192 |
(C3×C6).36(C3⋊D4) = He3⋊9SD16 | φ: C3⋊D4/C22 → S3 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).36(C3:D4) | 432,193 |
(C3×C6).37(C3⋊D4) = He3⋊11SD16 | φ: C3⋊D4/C22 → S3 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).37(C3:D4) | 432,196 |
(C3×C6).38(C3⋊D4) = He3⋊7Q16 | φ: C3⋊D4/C22 → S3 ⊆ Aut C3×C6 | 144 | 6 | (C3xC6).38(C3:D4) | 432,197 |
(C3×C6).39(C3⋊D4) = C62⋊4Dic3 | φ: C3⋊D4/C22 → S3 ⊆ Aut C3×C6 | 72 | | (C3xC6).39(C3:D4) | 432,199 |
(C3×C6).40(C3⋊D4) = C2×Dic9⋊C6 | φ: C3⋊D4/C22 → S3 ⊆ Aut C3×C6 | 72 | | (C3xC6).40(C3:D4) | 432,379 |
(C3×C6).41(C3⋊D4) = D36⋊S3 | φ: C3⋊D4/C6 → C22 ⊆ Aut C3×C6 | 144 | 4 | (C3xC6).41(C3:D4) | 432,68 |
(C3×C6).42(C3⋊D4) = C9⋊D24 | φ: C3⋊D4/C6 → C22 ⊆ Aut C3×C6 | 72 | 4+ | (C3xC6).42(C3:D4) | 432,69 |
(C3×C6).43(C3⋊D4) = D12.D9 | φ: C3⋊D4/C6 → C22 ⊆ Aut C3×C6 | 144 | 4 | (C3xC6).43(C3:D4) | 432,70 |
(C3×C6).44(C3⋊D4) = C36.D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C3×C6 | 144 | 4- | (C3xC6).44(C3:D4) | 432,71 |
(C3×C6).45(C3⋊D4) = Dic6⋊D9 | φ: C3⋊D4/C6 → C22 ⊆ Aut C3×C6 | 144 | 4 | (C3xC6).45(C3:D4) | 432,72 |
(C3×C6).46(C3⋊D4) = C18.D12 | φ: C3⋊D4/C6 → C22 ⊆ Aut C3×C6 | 72 | 4+ | (C3xC6).46(C3:D4) | 432,73 |
(C3×C6).47(C3⋊D4) = C12.D18 | φ: C3⋊D4/C6 → C22 ⊆ Aut C3×C6 | 144 | 4 | (C3xC6).47(C3:D4) | 432,74 |
(C3×C6).48(C3⋊D4) = C9⋊Dic12 | φ: C3⋊D4/C6 → C22 ⊆ Aut C3×C6 | 144 | 4- | (C3xC6).48(C3:D4) | 432,75 |
(C3×C6).49(C3⋊D4) = Dic9⋊Dic3 | φ: C3⋊D4/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).49(C3:D4) | 432,88 |
(C3×C6).50(C3⋊D4) = C18.Dic6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).50(C3:D4) | 432,89 |
(C3×C6).51(C3⋊D4) = D18⋊Dic3 | φ: C3⋊D4/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).51(C3:D4) | 432,91 |
(C3×C6).52(C3⋊D4) = C6.18D36 | φ: C3⋊D4/C6 → C22 ⊆ Aut C3×C6 | 72 | | (C3xC6).52(C3:D4) | 432,92 |
(C3×C6).53(C3⋊D4) = D6⋊Dic9 | φ: C3⋊D4/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).53(C3:D4) | 432,93 |
(C3×C6).54(C3⋊D4) = C2×D6⋊D9 | φ: C3⋊D4/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).54(C3:D4) | 432,311 |
(C3×C6).55(C3⋊D4) = C2×C9⋊D12 | φ: C3⋊D4/C6 → C22 ⊆ Aut C3×C6 | 72 | | (C3xC6).55(C3:D4) | 432,312 |
(C3×C6).56(C3⋊D4) = C33⋊7D8 | φ: C3⋊D4/C6 → C22 ⊆ Aut C3×C6 | 72 | | (C3xC6).56(C3:D4) | 432,437 |
(C3×C6).57(C3⋊D4) = C33⋊14SD16 | φ: C3⋊D4/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).57(C3:D4) | 432,441 |
(C3×C6).58(C3⋊D4) = C33⋊15SD16 | φ: C3⋊D4/C6 → C22 ⊆ Aut C3×C6 | 72 | | (C3xC6).58(C3:D4) | 432,442 |
(C3×C6).59(C3⋊D4) = C33⋊7Q16 | φ: C3⋊D4/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).59(C3:D4) | 432,446 |
(C3×C6).60(C3⋊D4) = C62.77D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).60(C3:D4) | 432,449 |
(C3×C6).61(C3⋊D4) = C62.78D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).61(C3:D4) | 432,450 |
(C3×C6).62(C3⋊D4) = C62.79D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C3×C6 | 72 | | (C3xC6).62(C3:D4) | 432,451 |
(C3×C6).63(C3⋊D4) = C62.81D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).63(C3:D4) | 432,453 |
(C3×C6).64(C3⋊D4) = C62.82D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C3×C6 | 144 | | (C3xC6).64(C3:D4) | 432,454 |
(C3×C6).65(C3⋊D4) = C33⋊9D8 | φ: C3⋊D4/C6 → C22 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).65(C3:D4) | 432,457 |
(C3×C6).66(C3⋊D4) = C33⋊18SD16 | φ: C3⋊D4/C6 → C22 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).66(C3:D4) | 432,458 |
(C3×C6).67(C3⋊D4) = C33⋊9Q16 | φ: C3⋊D4/C6 → C22 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).67(C3:D4) | 432,459 |
(C3×C6).68(C3⋊D4) = C62.84D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).68(C3:D4) | 432,461 |
(C3×C6).69(C3⋊D4) = C62.85D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).69(C3:D4) | 432,462 |
(C3×C6).70(C3⋊D4) = C3×C3⋊D24 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).70(C3:D4) | 432,419 |
(C3×C6).71(C3⋊D4) = C3×D12.S3 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).71(C3:D4) | 432,421 |
(C3×C6).72(C3⋊D4) = C3×C32⋊5SD16 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).72(C3:D4) | 432,422 |
(C3×C6).73(C3⋊D4) = C3×C32⋊3Q16 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).73(C3:D4) | 432,424 |
(C3×C6).74(C3⋊D4) = C3×D6⋊Dic3 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).74(C3:D4) | 432,426 |
(C3×C6).75(C3⋊D4) = C3×C6.D12 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).75(C3:D4) | 432,427 |
(C3×C6).76(C3⋊D4) = C3×Dic3⋊Dic3 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).76(C3:D4) | 432,428 |
(C3×C6).77(C3⋊D4) = C33⋊8D8 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).77(C3:D4) | 432,438 |
(C3×C6).78(C3⋊D4) = C33⋊16SD16 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).78(C3:D4) | 432,443 |
(C3×C6).79(C3⋊D4) = C33⋊17SD16 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).79(C3:D4) | 432,444 |
(C3×C6).80(C3⋊D4) = C33⋊8Q16 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).80(C3:D4) | 432,447 |
(C3×C6).81(C3⋊D4) = C62.80D6 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).81(C3:D4) | 432,452 |
(C3×C6).82(C3⋊D4) = C3×C32⋊2D8 | φ: C3⋊D4/D6 → C2 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).82(C3:D4) | 432,418 |
(C3×C6).83(C3⋊D4) = C3×Dic6⋊S3 | φ: C3⋊D4/D6 → C2 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).83(C3:D4) | 432,420 |
(C3×C6).84(C3⋊D4) = C3×C32⋊2Q16 | φ: C3⋊D4/D6 → C2 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).84(C3:D4) | 432,423 |
(C3×C6).85(C3⋊D4) = C3×C62.C22 | φ: C3⋊D4/D6 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).85(C3:D4) | 432,429 |
(C3×C6).86(C3⋊D4) = C33⋊6D8 | φ: C3⋊D4/D6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).86(C3:D4) | 432,436 |
(C3×C6).87(C3⋊D4) = C33⋊12SD16 | φ: C3⋊D4/D6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).87(C3:D4) | 432,439 |
(C3×C6).88(C3⋊D4) = C33⋊13SD16 | φ: C3⋊D4/D6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).88(C3:D4) | 432,440 |
(C3×C6).89(C3⋊D4) = C33⋊6Q16 | φ: C3⋊D4/D6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).89(C3:D4) | 432,445 |
(C3×C6).90(C3⋊D4) = C3×Dic9⋊C4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).90(C3:D4) | 432,129 |
(C3×C6).91(C3⋊D4) = C3×D18⋊C4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).91(C3:D4) | 432,134 |
(C3×C6).92(C3⋊D4) = C3×D4.D9 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 72 | 4 | (C3xC6).92(C3:D4) | 432,148 |
(C3×C6).93(C3⋊D4) = C3×D4⋊D9 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 72 | 4 | (C3xC6).93(C3:D4) | 432,149 |
(C3×C6).94(C3⋊D4) = C3×C9⋊Q16 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 144 | 4 | (C3xC6).94(C3:D4) | 432,156 |
(C3×C6).95(C3⋊D4) = C3×Q8⋊2D9 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 144 | 4 | (C3xC6).95(C3:D4) | 432,157 |
(C3×C6).96(C3⋊D4) = C3×C18.D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).96(C3:D4) | 432,164 |
(C3×C6).97(C3⋊D4) = C6.Dic18 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 432 | | (C3xC6).97(C3:D4) | 432,181 |
(C3×C6).98(C3⋊D4) = C6.11D36 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).98(C3:D4) | 432,183 |
(C3×C6).99(C3⋊D4) = C36.17D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).99(C3:D4) | 432,190 |
(C3×C6).100(C3⋊D4) = C36.18D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).100(C3:D4) | 432,191 |
(C3×C6).101(C3⋊D4) = C36.19D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 432 | | (C3xC6).101(C3:D4) | 432,194 |
(C3×C6).102(C3⋊D4) = C36.20D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).102(C3:D4) | 432,195 |
(C3×C6).103(C3⋊D4) = C62.127D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).103(C3:D4) | 432,198 |
(C3×C6).104(C3⋊D4) = C6×C9⋊D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).104(C3:D4) | 432,374 |
(C3×C6).105(C3⋊D4) = C2×C6.D18 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).105(C3:D4) | 432,397 |
(C3×C6).106(C3⋊D4) = C3×C6.Dic6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).106(C3:D4) | 432,488 |
(C3×C6).107(C3⋊D4) = C3×C6.11D12 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).107(C3:D4) | 432,490 |
(C3×C6).108(C3⋊D4) = C3×C32⋊7D8 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).108(C3:D4) | 432,491 |
(C3×C6).109(C3⋊D4) = C3×C32⋊9SD16 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).109(C3:D4) | 432,492 |
(C3×C6).110(C3⋊D4) = C3×C32⋊11SD16 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).110(C3:D4) | 432,493 |
(C3×C6).111(C3⋊D4) = C3×C32⋊7Q16 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).111(C3:D4) | 432,494 |
(C3×C6).112(C3⋊D4) = C3×C62⋊5C4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).112(C3:D4) | 432,495 |
(C3×C6).113(C3⋊D4) = C62.146D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 432 | | (C3xC6).113(C3:D4) | 432,504 |
(C3×C6).114(C3⋊D4) = C62.148D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).114(C3:D4) | 432,506 |
(C3×C6).115(C3⋊D4) = C33⋊15D8 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).115(C3:D4) | 432,507 |
(C3×C6).116(C3⋊D4) = C33⋊24SD16 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).116(C3:D4) | 432,508 |
(C3×C6).117(C3⋊D4) = C33⋊27SD16 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).117(C3:D4) | 432,509 |
(C3×C6).118(C3⋊D4) = C33⋊15Q16 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 432 | | (C3xC6).118(C3:D4) | 432,510 |
(C3×C6).119(C3⋊D4) = C63.C2 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).119(C3:D4) | 432,511 |
(C3×C6).120(C3⋊D4) = C32×Dic3⋊C4 | central extension (φ=1) | 144 | | (C3xC6).120(C3:D4) | 432,472 |
(C3×C6).121(C3⋊D4) = C32×D6⋊C4 | central extension (φ=1) | 144 | | (C3xC6).121(C3:D4) | 432,474 |
(C3×C6).122(C3⋊D4) = C32×D4⋊S3 | central extension (φ=1) | 72 | | (C3xC6).122(C3:D4) | 432,475 |
(C3×C6).123(C3⋊D4) = C32×D4.S3 | central extension (φ=1) | 72 | | (C3xC6).123(C3:D4) | 432,476 |
(C3×C6).124(C3⋊D4) = C32×Q8⋊2S3 | central extension (φ=1) | 144 | | (C3xC6).124(C3:D4) | 432,477 |
(C3×C6).125(C3⋊D4) = C32×C3⋊Q16 | central extension (φ=1) | 144 | | (C3xC6).125(C3:D4) | 432,478 |
(C3×C6).126(C3⋊D4) = C32×C6.D4 | central extension (φ=1) | 72 | | (C3xC6).126(C3:D4) | 432,479 |