Copied to
clipboard

G = C7×C8.26D4order 448 = 26·7

Direct product of C7 and C8.26D4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C7×C8.26D4, D84C28, Q164C28, SD162C28, C56.105D4, C4≀C26C14, C8○D47C14, (C7×D8)⋊10C4, C8.6(C2×C28), C8⋊C43C14, C8.25(C7×D4), C56.47(C2×C4), (C7×Q16)⋊10C4, (C7×SD16)⋊6C4, C4○D8.3C14, D4.4(C2×C28), C4.83(D4×C14), C2.19(D4×C28), Q8.4(C2×C28), C8.C44C14, C14.121(C4×D4), C28.488(C2×D4), C42.11(C2×C14), C4.16(C22×C28), (C2×C28).911C23, (C2×C56).271C22, (C4×C28).252C22, C28.161(C22×C4), M4(2).12(C2×C14), (C7×M4(2)).46C22, (C7×C4≀C2)⋊14C2, (C7×C8○D4)⋊16C2, (C7×C4○D8).8C2, (C7×C8⋊C4)⋊12C2, (C2×C8).54(C2×C14), C4○D4.9(C2×C14), (C7×D4).21(C2×C4), (C7×Q8).22(C2×C4), (C7×C8.C4)⋊13C2, C22.2(C7×C4○D4), (C2×C14).50(C4○D4), (C2×C4).86(C22×C14), (C7×C4○D4).54C22, SmallGroup(448,852)

Series: Derived Chief Lower central Upper central

C1C4 — C7×C8.26D4
C1C2C4C2×C4C2×C28C7×M4(2)C7×C4≀C2 — C7×C8.26D4
C1C2C4 — C7×C8.26D4
C1C28C2×C56 — C7×C8.26D4

Generators and relations for C7×C8.26D4
 G = < a,b,c,d | a7=b8=c4=1, d2=b2, ab=ba, ac=ca, ad=da, cbc-1=dbd-1=b5, dcd-1=b2c-1 >

Subgroups: 154 in 104 conjugacy classes, 66 normal (34 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C8, C8, C2×C4, C2×C4, D4, D4, Q8, C14, C14, C42, C2×C8, C2×C8, M4(2), M4(2), D8, SD16, Q16, C4○D4, C28, C28, C2×C14, C2×C14, C8⋊C4, C4≀C2, C8.C4, C8○D4, C4○D8, C56, C56, C56, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C8.26D4, C4×C28, C2×C56, C2×C56, C7×M4(2), C7×M4(2), C7×D8, C7×SD16, C7×Q16, C7×C4○D4, C7×C8⋊C4, C7×C4≀C2, C7×C8.C4, C7×C8○D4, C7×C4○D8, C7×C8.26D4
Quotients: C1, C2, C4, C22, C7, C2×C4, D4, C23, C14, C22×C4, C2×D4, C4○D4, C28, C2×C14, C4×D4, C2×C28, C7×D4, C22×C14, C8.26D4, C22×C28, D4×C14, C7×C4○D4, D4×C28, C7×C8.26D4

Smallest permutation representation of C7×C8.26D4
On 112 points
Generators in S112
(1 59 38 55 23 47 11)(2 60 39 56 24 48 12)(3 61 40 49 17 41 13)(4 62 33 50 18 42 14)(5 63 34 51 19 43 15)(6 64 35 52 20 44 16)(7 57 36 53 21 45 9)(8 58 37 54 22 46 10)(25 76 105 96 85 68 97)(26 77 106 89 86 69 98)(27 78 107 90 87 70 99)(28 79 108 91 88 71 100)(29 80 109 92 81 72 101)(30 73 110 93 82 65 102)(31 74 111 94 83 66 103)(32 75 112 95 84 67 104)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)
(2 6)(4 8)(10 14)(12 16)(18 22)(20 24)(25 27 29 31)(26 32 30 28)(33 37)(35 39)(42 46)(44 48)(50 54)(52 56)(58 62)(60 64)(65 71 69 67)(66 68 70 72)(73 79 77 75)(74 76 78 80)(81 83 85 87)(82 88 86 84)(89 95 93 91)(90 92 94 96)(97 99 101 103)(98 104 102 100)(105 107 109 111)(106 112 110 108)
(1 103 3 97 5 99 7 101)(2 100 4 102 6 104 8 98)(9 72 11 66 13 68 15 70)(10 69 12 71 14 65 16 67)(17 96 19 90 21 92 23 94)(18 93 20 95 22 89 24 91)(25 63 27 57 29 59 31 61)(26 60 28 62 30 64 32 58)(33 73 35 75 37 77 39 79)(34 78 36 80 38 74 40 76)(41 85 43 87 45 81 47 83)(42 82 44 84 46 86 48 88)(49 105 51 107 53 109 55 111)(50 110 52 112 54 106 56 108)

G:=sub<Sym(112)| (1,59,38,55,23,47,11)(2,60,39,56,24,48,12)(3,61,40,49,17,41,13)(4,62,33,50,18,42,14)(5,63,34,51,19,43,15)(6,64,35,52,20,44,16)(7,57,36,53,21,45,9)(8,58,37,54,22,46,10)(25,76,105,96,85,68,97)(26,77,106,89,86,69,98)(27,78,107,90,87,70,99)(28,79,108,91,88,71,100)(29,80,109,92,81,72,101)(30,73,110,93,82,65,102)(31,74,111,94,83,66,103)(32,75,112,95,84,67,104), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (2,6)(4,8)(10,14)(12,16)(18,22)(20,24)(25,27,29,31)(26,32,30,28)(33,37)(35,39)(42,46)(44,48)(50,54)(52,56)(58,62)(60,64)(65,71,69,67)(66,68,70,72)(73,79,77,75)(74,76,78,80)(81,83,85,87)(82,88,86,84)(89,95,93,91)(90,92,94,96)(97,99,101,103)(98,104,102,100)(105,107,109,111)(106,112,110,108), (1,103,3,97,5,99,7,101)(2,100,4,102,6,104,8,98)(9,72,11,66,13,68,15,70)(10,69,12,71,14,65,16,67)(17,96,19,90,21,92,23,94)(18,93,20,95,22,89,24,91)(25,63,27,57,29,59,31,61)(26,60,28,62,30,64,32,58)(33,73,35,75,37,77,39,79)(34,78,36,80,38,74,40,76)(41,85,43,87,45,81,47,83)(42,82,44,84,46,86,48,88)(49,105,51,107,53,109,55,111)(50,110,52,112,54,106,56,108)>;

G:=Group( (1,59,38,55,23,47,11)(2,60,39,56,24,48,12)(3,61,40,49,17,41,13)(4,62,33,50,18,42,14)(5,63,34,51,19,43,15)(6,64,35,52,20,44,16)(7,57,36,53,21,45,9)(8,58,37,54,22,46,10)(25,76,105,96,85,68,97)(26,77,106,89,86,69,98)(27,78,107,90,87,70,99)(28,79,108,91,88,71,100)(29,80,109,92,81,72,101)(30,73,110,93,82,65,102)(31,74,111,94,83,66,103)(32,75,112,95,84,67,104), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (2,6)(4,8)(10,14)(12,16)(18,22)(20,24)(25,27,29,31)(26,32,30,28)(33,37)(35,39)(42,46)(44,48)(50,54)(52,56)(58,62)(60,64)(65,71,69,67)(66,68,70,72)(73,79,77,75)(74,76,78,80)(81,83,85,87)(82,88,86,84)(89,95,93,91)(90,92,94,96)(97,99,101,103)(98,104,102,100)(105,107,109,111)(106,112,110,108), (1,103,3,97,5,99,7,101)(2,100,4,102,6,104,8,98)(9,72,11,66,13,68,15,70)(10,69,12,71,14,65,16,67)(17,96,19,90,21,92,23,94)(18,93,20,95,22,89,24,91)(25,63,27,57,29,59,31,61)(26,60,28,62,30,64,32,58)(33,73,35,75,37,77,39,79)(34,78,36,80,38,74,40,76)(41,85,43,87,45,81,47,83)(42,82,44,84,46,86,48,88)(49,105,51,107,53,109,55,111)(50,110,52,112,54,106,56,108) );

G=PermutationGroup([[(1,59,38,55,23,47,11),(2,60,39,56,24,48,12),(3,61,40,49,17,41,13),(4,62,33,50,18,42,14),(5,63,34,51,19,43,15),(6,64,35,52,20,44,16),(7,57,36,53,21,45,9),(8,58,37,54,22,46,10),(25,76,105,96,85,68,97),(26,77,106,89,86,69,98),(27,78,107,90,87,70,99),(28,79,108,91,88,71,100),(29,80,109,92,81,72,101),(30,73,110,93,82,65,102),(31,74,111,94,83,66,103),(32,75,112,95,84,67,104)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112)], [(2,6),(4,8),(10,14),(12,16),(18,22),(20,24),(25,27,29,31),(26,32,30,28),(33,37),(35,39),(42,46),(44,48),(50,54),(52,56),(58,62),(60,64),(65,71,69,67),(66,68,70,72),(73,79,77,75),(74,76,78,80),(81,83,85,87),(82,88,86,84),(89,95,93,91),(90,92,94,96),(97,99,101,103),(98,104,102,100),(105,107,109,111),(106,112,110,108)], [(1,103,3,97,5,99,7,101),(2,100,4,102,6,104,8,98),(9,72,11,66,13,68,15,70),(10,69,12,71,14,65,16,67),(17,96,19,90,21,92,23,94),(18,93,20,95,22,89,24,91),(25,63,27,57,29,59,31,61),(26,60,28,62,30,64,32,58),(33,73,35,75,37,77,39,79),(34,78,36,80,38,74,40,76),(41,85,43,87,45,81,47,83),(42,82,44,84,46,86,48,88),(49,105,51,107,53,109,55,111),(50,110,52,112,54,106,56,108)]])

154 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G7A···7F8A8B8C8D8E···8J14A···14F14G···14L14M···14X28A···28L28M···28R28S···28AP56A···56X56Y···56BH
order1222244444447···788888···814···1414···1414···1428···2828···2828···2856···5656···56
size1124411244441···122224···41···12···24···41···12···24···42···24···4

154 irreducible representations

dim111111111111111111222244
type+++++++
imageC1C2C2C2C2C2C4C4C4C7C14C14C14C14C14C28C28C28D4C4○D4C7×D4C7×C4○D4C8.26D4C7×C8.26D4
kernelC7×C8.26D4C7×C8⋊C4C7×C4≀C2C7×C8.C4C7×C8○D4C7×C4○D8C7×D8C7×SD16C7×Q16C8.26D4C8⋊C4C4≀C2C8.C4C8○D4C4○D8D8SD16Q16C56C2×C14C8C22C7C1
# reps11212124266126126122412221212212

Matrix representation of C7×C8.26D4 in GL4(𝔽113) generated by

16000
01600
00160
00016
,
0100
98000
0001
00980
,
1000
011200
00980
00015
,
00980
00015
1000
011200
G:=sub<GL(4,GF(113))| [16,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[0,98,0,0,1,0,0,0,0,0,0,98,0,0,1,0],[1,0,0,0,0,112,0,0,0,0,98,0,0,0,0,15],[0,0,1,0,0,0,0,112,98,0,0,0,0,15,0,0] >;

C7×C8.26D4 in GAP, Magma, Sage, TeX

C_7\times C_8._{26}D_4
% in TeX

G:=Group("C7xC8.26D4");
// GroupNames label

G:=SmallGroup(448,852);
// by ID

G=gap.SmallGroup(448,852);
# by ID

G:=PCGroup([7,-2,-2,-2,-7,-2,-2,-2,784,813,4790,604,9804,4911,172,124]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^8=c^4=1,d^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d^-1=b^5,d*c*d^-1=b^2*c^-1>;
// generators/relations

׿
×
𝔽