Copied to
clipboard

G = C7xC8oD8order 448 = 26·7

Direct product of C7 and C8oD8

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C7xC8oD8, D8:5C28, Q16:5C28, C56.77D4, SD16:3C28, C4wrC2:7C14, (C4xC56):26C2, (C4xC8):10C14, C8oD4:6C14, (C7xD8):11C4, C8.30(C7xD4), C8.11(C2xC28), C56.67(C2xC4), (C7xQ16):11C4, C4oD8.5C14, (C7xSD16):7C4, D4.3(C2xC28), C2.18(D4xC28), C4.82(D4xC14), Q8.3(C2xC28), C8.C4:8C14, C14.120(C4xD4), C28.487(C2xD4), C42.73(C2xC14), C4.15(C22xC28), (C4xC28).358C22, C28.160(C22xC4), (C2xC56).433C22, (C2xC28).910C23, M4(2).11(C2xC14), (C7xM4(2)).45C22, (C7xC4wrC2):15C2, (C7xC8oD4):15C2, (C7xC4oD8).10C2, C4oD4.8(C2xC14), (C7xD4).20(C2xC4), (C7xQ8).21(C2xC4), (C7xC8.C4):17C2, C22.1(C7xC4oD4), (C2xC8).101(C2xC14), (C2xC14).49(C4oD4), (C2xC4).85(C22xC14), (C7xC4oD4).53C22, SmallGroup(448,851)

Series: Derived Chief Lower central Upper central

C1C4 — C7xC8oD8
C1C2C4C2xC4C2xC28C7xM4(2)C7xC4wrC2 — C7xC8oD8
C1C2C4 — C7xC8oD8
C1C56C2xC56 — C7xC8oD8

Generators and relations for C7xC8oD8
 G = < a,b,c,d | a7=b8=d2=1, c4=b4, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=b4c3 >

Subgroups: 154 in 106 conjugacy classes, 66 normal (38 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2xC4, C2xC4, D4, D4, Q8, C14, C14, C42, C2xC8, C2xC8, M4(2), M4(2), D8, SD16, Q16, C4oD4, C28, C28, C2xC14, C2xC14, C4xC8, C4wrC2, C8.C4, C8oD4, C4oD8, C56, C56, C2xC28, C2xC28, C7xD4, C7xD4, C7xQ8, C8oD8, C4xC28, C2xC56, C2xC56, C7xM4(2), C7xM4(2), C7xD8, C7xSD16, C7xQ16, C7xC4oD4, C4xC56, C7xC4wrC2, C7xC8.C4, C7xC8oD4, C7xC4oD8, C7xC8oD8
Quotients: C1, C2, C4, C22, C7, C2xC4, D4, C23, C14, C22xC4, C2xD4, C4oD4, C28, C2xC14, C4xD4, C2xC28, C7xD4, C22xC14, C8oD8, C22xC28, D4xC14, C7xC4oD4, D4xC28, C7xC8oD8

Smallest permutation representation of C7xC8oD8
On 112 points
Generators in S112
(1 59 23 55 10 47 35)(2 60 24 56 11 48 36)(3 61 17 49 12 41 37)(4 62 18 50 13 42 38)(5 63 19 51 14 43 39)(6 64 20 52 15 44 40)(7 57 21 53 16 45 33)(8 58 22 54 9 46 34)(25 76 105 96 85 68 97)(26 77 106 89 86 69 98)(27 78 107 90 87 70 99)(28 79 108 91 88 71 100)(29 80 109 92 81 72 101)(30 73 110 93 82 65 102)(31 74 111 94 83 66 103)(32 75 112 95 84 67 104)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)
(1 6 3 8 5 2 7 4)(9 14 11 16 13 10 15 12)(17 22 19 24 21 18 23 20)(25 28 31 26 29 32 27 30)(33 38 35 40 37 34 39 36)(41 46 43 48 45 42 47 44)(49 54 51 56 53 50 55 52)(57 62 59 64 61 58 63 60)(65 68 71 66 69 72 67 70)(73 76 79 74 77 80 75 78)(81 84 87 82 85 88 83 86)(89 92 95 90 93 96 91 94)(97 100 103 98 101 104 99 102)(105 108 111 106 109 112 107 110)
(1 103)(2 104)(3 97)(4 98)(5 99)(6 100)(7 101)(8 102)(9 93)(10 94)(11 95)(12 96)(13 89)(14 90)(15 91)(16 92)(17 76)(18 77)(19 78)(20 79)(21 80)(22 73)(23 74)(24 75)(25 61)(26 62)(27 63)(28 64)(29 57)(30 58)(31 59)(32 60)(33 72)(34 65)(35 66)(36 67)(37 68)(38 69)(39 70)(40 71)(41 85)(42 86)(43 87)(44 88)(45 81)(46 82)(47 83)(48 84)(49 105)(50 106)(51 107)(52 108)(53 109)(54 110)(55 111)(56 112)

G:=sub<Sym(112)| (1,59,23,55,10,47,35)(2,60,24,56,11,48,36)(3,61,17,49,12,41,37)(4,62,18,50,13,42,38)(5,63,19,51,14,43,39)(6,64,20,52,15,44,40)(7,57,21,53,16,45,33)(8,58,22,54,9,46,34)(25,76,105,96,85,68,97)(26,77,106,89,86,69,98)(27,78,107,90,87,70,99)(28,79,108,91,88,71,100)(29,80,109,92,81,72,101)(30,73,110,93,82,65,102)(31,74,111,94,83,66,103)(32,75,112,95,84,67,104), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,6,3,8,5,2,7,4)(9,14,11,16,13,10,15,12)(17,22,19,24,21,18,23,20)(25,28,31,26,29,32,27,30)(33,38,35,40,37,34,39,36)(41,46,43,48,45,42,47,44)(49,54,51,56,53,50,55,52)(57,62,59,64,61,58,63,60)(65,68,71,66,69,72,67,70)(73,76,79,74,77,80,75,78)(81,84,87,82,85,88,83,86)(89,92,95,90,93,96,91,94)(97,100,103,98,101,104,99,102)(105,108,111,106,109,112,107,110), (1,103)(2,104)(3,97)(4,98)(5,99)(6,100)(7,101)(8,102)(9,93)(10,94)(11,95)(12,96)(13,89)(14,90)(15,91)(16,92)(17,76)(18,77)(19,78)(20,79)(21,80)(22,73)(23,74)(24,75)(25,61)(26,62)(27,63)(28,64)(29,57)(30,58)(31,59)(32,60)(33,72)(34,65)(35,66)(36,67)(37,68)(38,69)(39,70)(40,71)(41,85)(42,86)(43,87)(44,88)(45,81)(46,82)(47,83)(48,84)(49,105)(50,106)(51,107)(52,108)(53,109)(54,110)(55,111)(56,112)>;

G:=Group( (1,59,23,55,10,47,35)(2,60,24,56,11,48,36)(3,61,17,49,12,41,37)(4,62,18,50,13,42,38)(5,63,19,51,14,43,39)(6,64,20,52,15,44,40)(7,57,21,53,16,45,33)(8,58,22,54,9,46,34)(25,76,105,96,85,68,97)(26,77,106,89,86,69,98)(27,78,107,90,87,70,99)(28,79,108,91,88,71,100)(29,80,109,92,81,72,101)(30,73,110,93,82,65,102)(31,74,111,94,83,66,103)(32,75,112,95,84,67,104), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,6,3,8,5,2,7,4)(9,14,11,16,13,10,15,12)(17,22,19,24,21,18,23,20)(25,28,31,26,29,32,27,30)(33,38,35,40,37,34,39,36)(41,46,43,48,45,42,47,44)(49,54,51,56,53,50,55,52)(57,62,59,64,61,58,63,60)(65,68,71,66,69,72,67,70)(73,76,79,74,77,80,75,78)(81,84,87,82,85,88,83,86)(89,92,95,90,93,96,91,94)(97,100,103,98,101,104,99,102)(105,108,111,106,109,112,107,110), (1,103)(2,104)(3,97)(4,98)(5,99)(6,100)(7,101)(8,102)(9,93)(10,94)(11,95)(12,96)(13,89)(14,90)(15,91)(16,92)(17,76)(18,77)(19,78)(20,79)(21,80)(22,73)(23,74)(24,75)(25,61)(26,62)(27,63)(28,64)(29,57)(30,58)(31,59)(32,60)(33,72)(34,65)(35,66)(36,67)(37,68)(38,69)(39,70)(40,71)(41,85)(42,86)(43,87)(44,88)(45,81)(46,82)(47,83)(48,84)(49,105)(50,106)(51,107)(52,108)(53,109)(54,110)(55,111)(56,112) );

G=PermutationGroup([[(1,59,23,55,10,47,35),(2,60,24,56,11,48,36),(3,61,17,49,12,41,37),(4,62,18,50,13,42,38),(5,63,19,51,14,43,39),(6,64,20,52,15,44,40),(7,57,21,53,16,45,33),(8,58,22,54,9,46,34),(25,76,105,96,85,68,97),(26,77,106,89,86,69,98),(27,78,107,90,87,70,99),(28,79,108,91,88,71,100),(29,80,109,92,81,72,101),(30,73,110,93,82,65,102),(31,74,111,94,83,66,103),(32,75,112,95,84,67,104)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112)], [(1,6,3,8,5,2,7,4),(9,14,11,16,13,10,15,12),(17,22,19,24,21,18,23,20),(25,28,31,26,29,32,27,30),(33,38,35,40,37,34,39,36),(41,46,43,48,45,42,47,44),(49,54,51,56,53,50,55,52),(57,62,59,64,61,58,63,60),(65,68,71,66,69,72,67,70),(73,76,79,74,77,80,75,78),(81,84,87,82,85,88,83,86),(89,92,95,90,93,96,91,94),(97,100,103,98,101,104,99,102),(105,108,111,106,109,112,107,110)], [(1,103),(2,104),(3,97),(4,98),(5,99),(6,100),(7,101),(8,102),(9,93),(10,94),(11,95),(12,96),(13,89),(14,90),(15,91),(16,92),(17,76),(18,77),(19,78),(20,79),(21,80),(22,73),(23,74),(24,75),(25,61),(26,62),(27,63),(28,64),(29,57),(30,58),(31,59),(32,60),(33,72),(34,65),(35,66),(36,67),(37,68),(38,69),(39,70),(40,71),(41,85),(42,86),(43,87),(44,88),(45,81),(46,82),(47,83),(48,84),(49,105),(50,106),(51,107),(52,108),(53,109),(54,110),(55,111),(56,112)]])

196 conjugacy classes

class 1 2A2B2C2D4A4B4C···4G4H4I7A···7F8A8B8C8D8E···8J8K8L8M8N14A···14F14G···14L14M···14X28A···28L28M···28AP28AQ···28BB56A···56X56Y···56BH56BI···56CF
order12222444···4447···788888···8888814···1414···1414···1428···2828···2828···2856···5656···5656···56
size11244112···2441···111112···244441···12···24···41···12···24···41···12···24···4

196 irreducible representations

dim111111111111111111222222
type+++++++
imageC1C2C2C2C2C2C4C4C4C7C14C14C14C14C14C28C28C28D4C4oD4C7xD4C8oD8C7xC4oD4C7xC8oD8
kernelC7xC8oD8C4xC56C7xC4wrC2C7xC8.C4C7xC8oD4C7xC4oD8C7xD8C7xSD16C7xQ16C8oD8C4xC8C4wrC2C8.C4C8oD4C4oD8D8SD16Q16C56C2xC14C8C7C22C1
# reps11212124266126126122412221281248

Matrix representation of C7xC8oD8 in GL3(F113) generated by

3000
010
001
,
100
0180
0018
,
11200
0950
01369
,
11200
01111
00112
G:=sub<GL(3,GF(113))| [30,0,0,0,1,0,0,0,1],[1,0,0,0,18,0,0,0,18],[112,0,0,0,95,13,0,0,69],[112,0,0,0,1,0,0,111,112] >;

C7xC8oD8 in GAP, Magma, Sage, TeX

C_7\times C_8\circ D_8
% in TeX

G:=Group("C7xC8oD8");
// GroupNames label

G:=SmallGroup(448,851);
// by ID

G=gap.SmallGroup(448,851);
# by ID

G:=PCGroup([7,-2,-2,-2,-7,-2,-2,-2,784,813,604,9804,4911,172,124]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^8=d^2=1,c^4=b^4,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=b^4*c^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<