Copied to
clipboard

?

G = D7×C8○D4order 448 = 26·7

Direct product of D7 and C8○D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D7×C8○D4, C28.71C24, C56.48C23, M4(2)⋊27D14, (C2×C8)⋊30D14, (D4×D7).2C4, (Q8×D7).2C4, D4.12(C4×D7), C7⋊C8.36C23, Q8.13(C4×D7), D28.C414C2, (C2×C56)⋊25C22, C4○D4.42D14, D42D7.2C4, D28.20(C2×C4), (C8×D7)⋊20C22, Q82D7.2C4, C8.66(C22×D7), C4.70(C23×D7), C8⋊D720C22, (D7×M4(2))⋊12C2, D4.Dic714C2, C28.38(C22×C4), C14.34(C23×C4), (C4×D7).41C23, D28.2C416C2, (C2×C28).513C23, Dic14.21(C2×C4), C4○D28.51C22, D14.15(C22×C4), C4.Dic726C22, (C7×M4(2))⋊27C22, Dic7.15(C22×C4), C73(C2×C8○D4), (D7×C2×C8)⋊30C2, C4.38(C2×C4×D7), (C7×C8○D4)⋊8C2, C22.4(C2×C4×D7), (C2×C7⋊C8)⋊34C22, (D7×C4○D4).5C2, C7⋊D4.1(C2×C4), C2.35(D7×C22×C4), (C7×D4).16(C2×C4), (C4×D7).18(C2×C4), (C7×Q8).17(C2×C4), (C2×C14).4(C22×C4), (C2×C4×D7).254C22, (C2×Dic7).73(C2×C4), (C7×C4○D4).43C22, (C22×D7).47(C2×C4), (C2×C4).606(C22×D7), SmallGroup(448,1202)

Series: Derived Chief Lower central Upper central

C1C14 — D7×C8○D4
C1C7C14C28C4×D7C2×C4×D7D7×C4○D4 — D7×C8○D4
C7C14 — D7×C8○D4

Subgroups: 956 in 266 conjugacy classes, 149 normal (24 characteristic)
C1, C2, C2 [×8], C4, C4 [×3], C4 [×4], C22 [×3], C22 [×10], C7, C8, C8 [×3], C8 [×4], C2×C4 [×3], C2×C4 [×13], D4 [×3], D4 [×9], Q8, Q8 [×3], C23 [×3], D7 [×2], D7 [×3], C14, C14 [×3], C2×C8 [×3], C2×C8 [×13], M4(2) [×3], M4(2) [×9], C22×C4 [×3], C2×D4 [×3], C2×Q8, C4○D4, C4○D4 [×7], Dic7, Dic7 [×3], C28, C28 [×3], D14, D14 [×3], D14 [×6], C2×C14 [×3], C22×C8 [×3], C2×M4(2) [×3], C8○D4, C8○D4 [×7], C2×C4○D4, C7⋊C8, C7⋊C8 [×3], C56, C56 [×3], Dic14 [×3], C4×D7, C4×D7 [×9], D28 [×3], C2×Dic7 [×3], C7⋊D4 [×6], C2×C28 [×3], C7×D4 [×3], C7×Q8, C22×D7 [×3], C2×C8○D4, C8×D7, C8×D7 [×9], C8⋊D7 [×6], C2×C7⋊C8 [×3], C4.Dic7 [×3], C2×C56 [×3], C7×M4(2) [×3], C2×C4×D7 [×3], C4○D28 [×3], D4×D7 [×3], D42D7 [×3], Q8×D7, Q82D7, C7×C4○D4, D7×C2×C8 [×3], D28.2C4 [×3], D7×M4(2) [×3], D28.C4 [×3], D4.Dic7, C7×C8○D4, D7×C4○D4, D7×C8○D4

Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], C23 [×15], D7, C22×C4 [×14], C24, D14 [×7], C8○D4 [×2], C23×C4, C4×D7 [×4], C22×D7 [×7], C2×C8○D4, C2×C4×D7 [×6], C23×D7, D7×C22×C4, D7×C8○D4

Generators and relations
 G = < a,b,c,d,e | a7=b2=c8=e2=1, d2=c4, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=c4d >

Smallest permutation representation
On 112 points
Generators in S112
(1 83 65 103 92 75 57)(2 84 66 104 93 76 58)(3 85 67 97 94 77 59)(4 86 68 98 95 78 60)(5 87 69 99 96 79 61)(6 88 70 100 89 80 62)(7 81 71 101 90 73 63)(8 82 72 102 91 74 64)(9 42 32 109 50 40 20)(10 43 25 110 51 33 21)(11 44 26 111 52 34 22)(12 45 27 112 53 35 23)(13 46 28 105 54 36 24)(14 47 29 106 55 37 17)(15 48 30 107 56 38 18)(16 41 31 108 49 39 19)
(1 57)(2 58)(3 59)(4 60)(5 61)(6 62)(7 63)(8 64)(9 40)(10 33)(11 34)(12 35)(13 36)(14 37)(15 38)(16 39)(25 110)(26 111)(27 112)(28 105)(29 106)(30 107)(31 108)(32 109)(41 49)(42 50)(43 51)(44 52)(45 53)(46 54)(47 55)(48 56)(65 92)(66 93)(67 94)(68 95)(69 96)(70 89)(71 90)(72 91)(73 81)(74 82)(75 83)(76 84)(77 85)(78 86)(79 87)(80 88)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)
(1 108 5 112)(2 109 6 105)(3 110 7 106)(4 111 8 107)(9 89 13 93)(10 90 14 94)(11 91 15 95)(12 92 16 96)(17 97 21 101)(18 98 22 102)(19 99 23 103)(20 100 24 104)(25 63 29 59)(26 64 30 60)(27 57 31 61)(28 58 32 62)(33 71 37 67)(34 72 38 68)(35 65 39 69)(36 66 40 70)(41 79 45 75)(42 80 46 76)(43 73 47 77)(44 74 48 78)(49 87 53 83)(50 88 54 84)(51 81 55 85)(52 82 56 86)
(1 108)(2 109)(3 110)(4 111)(5 112)(6 105)(7 106)(8 107)(9 93)(10 94)(11 95)(12 96)(13 89)(14 90)(15 91)(16 92)(17 101)(18 102)(19 103)(20 104)(21 97)(22 98)(23 99)(24 100)(25 59)(26 60)(27 61)(28 62)(29 63)(30 64)(31 57)(32 58)(33 67)(34 68)(35 69)(36 70)(37 71)(38 72)(39 65)(40 66)(41 75)(42 76)(43 77)(44 78)(45 79)(46 80)(47 73)(48 74)(49 83)(50 84)(51 85)(52 86)(53 87)(54 88)(55 81)(56 82)

G:=sub<Sym(112)| (1,83,65,103,92,75,57)(2,84,66,104,93,76,58)(3,85,67,97,94,77,59)(4,86,68,98,95,78,60)(5,87,69,99,96,79,61)(6,88,70,100,89,80,62)(7,81,71,101,90,73,63)(8,82,72,102,91,74,64)(9,42,32,109,50,40,20)(10,43,25,110,51,33,21)(11,44,26,111,52,34,22)(12,45,27,112,53,35,23)(13,46,28,105,54,36,24)(14,47,29,106,55,37,17)(15,48,30,107,56,38,18)(16,41,31,108,49,39,19), (1,57)(2,58)(3,59)(4,60)(5,61)(6,62)(7,63)(8,64)(9,40)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(25,110)(26,111)(27,112)(28,105)(29,106)(30,107)(31,108)(32,109)(41,49)(42,50)(43,51)(44,52)(45,53)(46,54)(47,55)(48,56)(65,92)(66,93)(67,94)(68,95)(69,96)(70,89)(71,90)(72,91)(73,81)(74,82)(75,83)(76,84)(77,85)(78,86)(79,87)(80,88), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,108,5,112)(2,109,6,105)(3,110,7,106)(4,111,8,107)(9,89,13,93)(10,90,14,94)(11,91,15,95)(12,92,16,96)(17,97,21,101)(18,98,22,102)(19,99,23,103)(20,100,24,104)(25,63,29,59)(26,64,30,60)(27,57,31,61)(28,58,32,62)(33,71,37,67)(34,72,38,68)(35,65,39,69)(36,66,40,70)(41,79,45,75)(42,80,46,76)(43,73,47,77)(44,74,48,78)(49,87,53,83)(50,88,54,84)(51,81,55,85)(52,82,56,86), (1,108)(2,109)(3,110)(4,111)(5,112)(6,105)(7,106)(8,107)(9,93)(10,94)(11,95)(12,96)(13,89)(14,90)(15,91)(16,92)(17,101)(18,102)(19,103)(20,104)(21,97)(22,98)(23,99)(24,100)(25,59)(26,60)(27,61)(28,62)(29,63)(30,64)(31,57)(32,58)(33,67)(34,68)(35,69)(36,70)(37,71)(38,72)(39,65)(40,66)(41,75)(42,76)(43,77)(44,78)(45,79)(46,80)(47,73)(48,74)(49,83)(50,84)(51,85)(52,86)(53,87)(54,88)(55,81)(56,82)>;

G:=Group( (1,83,65,103,92,75,57)(2,84,66,104,93,76,58)(3,85,67,97,94,77,59)(4,86,68,98,95,78,60)(5,87,69,99,96,79,61)(6,88,70,100,89,80,62)(7,81,71,101,90,73,63)(8,82,72,102,91,74,64)(9,42,32,109,50,40,20)(10,43,25,110,51,33,21)(11,44,26,111,52,34,22)(12,45,27,112,53,35,23)(13,46,28,105,54,36,24)(14,47,29,106,55,37,17)(15,48,30,107,56,38,18)(16,41,31,108,49,39,19), (1,57)(2,58)(3,59)(4,60)(5,61)(6,62)(7,63)(8,64)(9,40)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(25,110)(26,111)(27,112)(28,105)(29,106)(30,107)(31,108)(32,109)(41,49)(42,50)(43,51)(44,52)(45,53)(46,54)(47,55)(48,56)(65,92)(66,93)(67,94)(68,95)(69,96)(70,89)(71,90)(72,91)(73,81)(74,82)(75,83)(76,84)(77,85)(78,86)(79,87)(80,88), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,108,5,112)(2,109,6,105)(3,110,7,106)(4,111,8,107)(9,89,13,93)(10,90,14,94)(11,91,15,95)(12,92,16,96)(17,97,21,101)(18,98,22,102)(19,99,23,103)(20,100,24,104)(25,63,29,59)(26,64,30,60)(27,57,31,61)(28,58,32,62)(33,71,37,67)(34,72,38,68)(35,65,39,69)(36,66,40,70)(41,79,45,75)(42,80,46,76)(43,73,47,77)(44,74,48,78)(49,87,53,83)(50,88,54,84)(51,81,55,85)(52,82,56,86), (1,108)(2,109)(3,110)(4,111)(5,112)(6,105)(7,106)(8,107)(9,93)(10,94)(11,95)(12,96)(13,89)(14,90)(15,91)(16,92)(17,101)(18,102)(19,103)(20,104)(21,97)(22,98)(23,99)(24,100)(25,59)(26,60)(27,61)(28,62)(29,63)(30,64)(31,57)(32,58)(33,67)(34,68)(35,69)(36,70)(37,71)(38,72)(39,65)(40,66)(41,75)(42,76)(43,77)(44,78)(45,79)(46,80)(47,73)(48,74)(49,83)(50,84)(51,85)(52,86)(53,87)(54,88)(55,81)(56,82) );

G=PermutationGroup([(1,83,65,103,92,75,57),(2,84,66,104,93,76,58),(3,85,67,97,94,77,59),(4,86,68,98,95,78,60),(5,87,69,99,96,79,61),(6,88,70,100,89,80,62),(7,81,71,101,90,73,63),(8,82,72,102,91,74,64),(9,42,32,109,50,40,20),(10,43,25,110,51,33,21),(11,44,26,111,52,34,22),(12,45,27,112,53,35,23),(13,46,28,105,54,36,24),(14,47,29,106,55,37,17),(15,48,30,107,56,38,18),(16,41,31,108,49,39,19)], [(1,57),(2,58),(3,59),(4,60),(5,61),(6,62),(7,63),(8,64),(9,40),(10,33),(11,34),(12,35),(13,36),(14,37),(15,38),(16,39),(25,110),(26,111),(27,112),(28,105),(29,106),(30,107),(31,108),(32,109),(41,49),(42,50),(43,51),(44,52),(45,53),(46,54),(47,55),(48,56),(65,92),(66,93),(67,94),(68,95),(69,96),(70,89),(71,90),(72,91),(73,81),(74,82),(75,83),(76,84),(77,85),(78,86),(79,87),(80,88)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112)], [(1,108,5,112),(2,109,6,105),(3,110,7,106),(4,111,8,107),(9,89,13,93),(10,90,14,94),(11,91,15,95),(12,92,16,96),(17,97,21,101),(18,98,22,102),(19,99,23,103),(20,100,24,104),(25,63,29,59),(26,64,30,60),(27,57,31,61),(28,58,32,62),(33,71,37,67),(34,72,38,68),(35,65,39,69),(36,66,40,70),(41,79,45,75),(42,80,46,76),(43,73,47,77),(44,74,48,78),(49,87,53,83),(50,88,54,84),(51,81,55,85),(52,82,56,86)], [(1,108),(2,109),(3,110),(4,111),(5,112),(6,105),(7,106),(8,107),(9,93),(10,94),(11,95),(12,96),(13,89),(14,90),(15,91),(16,92),(17,101),(18,102),(19,103),(20,104),(21,97),(22,98),(23,99),(24,100),(25,59),(26,60),(27,61),(28,62),(29,63),(30,64),(31,57),(32,58),(33,67),(34,68),(35,69),(36,70),(37,71),(38,72),(39,65),(40,66),(41,75),(42,76),(43,77),(44,78),(45,79),(46,80),(47,73),(48,74),(49,83),(50,84),(51,85),(52,86),(53,87),(54,88),(55,81),(56,82)])

Matrix representation G ⊆ GL4(𝔽113) generated by

33100
1118900
0010
0001
,
104900
79900
0010
0001
,
15000
01500
00690
00069
,
112000
011200
000112
0010
,
112000
011200
0001
0010
G:=sub<GL(4,GF(113))| [33,111,0,0,1,89,0,0,0,0,1,0,0,0,0,1],[104,79,0,0,9,9,0,0,0,0,1,0,0,0,0,1],[15,0,0,0,0,15,0,0,0,0,69,0,0,0,0,69],[112,0,0,0,0,112,0,0,0,0,0,1,0,0,112,0],[112,0,0,0,0,112,0,0,0,0,0,1,0,0,1,0] >;

100 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J7A7B7C8A8B8C8D8E···8J8K8L8M8N8O···8T14A14B14C14D···14L28A···28F28G···28O56A···56L56M···56AD
order1222222222444444444477788888···888888···814141414···1428···2828···2856···5656···56
size1122277141414112227714141422211112···2777714···142224···42···24···42···24···4

100 irreducible representations

dim11111111111122222224
type++++++++++++
imageC1C2C2C2C2C2C2C2C4C4C4C4D7D14D14D14C8○D4C4×D7C4×D7D7×C8○D4
kernelD7×C8○D4D7×C2×C8D28.2C4D7×M4(2)D28.C4D4.Dic7C7×C8○D4D7×C4○D4D4×D7D42D7Q8×D7Q82D7C8○D4C2×C8M4(2)C4○D4D7D4Q8C1
# reps1333311166223993818612

In GAP, Magma, Sage, TeX

D_7\times C_8\circ D_4
% in TeX

G:=Group("D7xC8oD4");
// GroupNames label

G:=SmallGroup(448,1202);
// by ID

G=gap.SmallGroup(448,1202);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,387,80,102,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^7=b^2=c^8=e^2=1,d^2=c^4,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=c^4*d>;
// generators/relations

׿
×
𝔽