Copied to
clipboard

?

G = (C2×C12)⋊6F5order 480 = 25·3·5

4th semidirect product of C2×C12 and F5 acting via F5/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×C60)⋊4C4, (C2×C12)⋊6F5, C60⋊C47C2, (D5×C12)⋊10C4, C60.60(C2×C4), (C4×D5)⋊5Dic3, (C4×D5).92D6, (C2×C20)⋊4Dic3, C12.53(C2×F5), (C6×Dic5)⋊15C4, C5⋊(C23.26D6), C154(C42⋊C2), C6.37(C22×F5), D5.5(C4○D12), (C2×Dic5)⋊9Dic3, C30.75(C22×C4), C20.21(C2×Dic3), (C6×D5).62C23, D10.17(C2×Dic3), D10.47(C22×S3), (C22×D5).103D6, C10.6(C22×Dic3), Dic5.17(C2×Dic3), D10.D6.2C2, (D5×C12).126C22, C34(D10.C23), (C4×C3⋊F5)⋊9C2, (C2×C4)⋊4(C3⋊F5), C4.21(C2×C3⋊F5), (C2×C4×D5).17S3, C22.7(C2×C3⋊F5), C2.7(C22×C3⋊F5), (D5×C2×C12).20C2, (C2×C6).48(C2×F5), (C2×C30).42(C2×C4), (C6×D5).60(C2×C4), (C2×C3⋊F5).15C22, (D5×C2×C6).145C22, (C3×D5).10(C4○D4), (C3×Dic5).67(C2×C4), (C2×C10).18(C2×Dic3), SmallGroup(480,1065)

Series: Derived Chief Lower central Upper central

C1C30 — (C2×C12)⋊6F5
C1C5C15C3×D5C6×D5C2×C3⋊F5C4×C3⋊F5 — (C2×C12)⋊6F5
C15C30 — (C2×C12)⋊6F5

Subgroups: 716 in 152 conjugacy classes, 61 normal (47 characteristic)
C1, C2, C2 [×4], C3, C4 [×2], C4 [×6], C22, C22 [×4], C5, C6, C6 [×4], C2×C4, C2×C4 [×9], C23, D5 [×2], D5, C10, C10, Dic3 [×4], C12 [×2], C12 [×2], C2×C6, C2×C6 [×4], C15, C42 [×2], C22⋊C4 [×2], C4⋊C4 [×2], C22×C4, Dic5 [×2], C20 [×2], F5 [×4], D10 [×2], D10 [×2], C2×C10, C2×Dic3 [×4], C2×C12, C2×C12 [×5], C22×C6, C3×D5 [×2], C3×D5, C30, C30, C42⋊C2, C4×D5 [×4], C2×Dic5, C2×C20, C2×F5 [×4], C22×D5, C4×Dic3 [×2], C4⋊Dic3 [×2], C6.D4 [×2], C22×C12, C3×Dic5 [×2], C60 [×2], C3⋊F5 [×4], C6×D5 [×2], C6×D5 [×2], C2×C30, C4×F5 [×2], C4⋊F5 [×2], C22⋊F5 [×2], C2×C4×D5, C23.26D6, D5×C12 [×4], C6×Dic5, C2×C60, C2×C3⋊F5 [×4], D5×C2×C6, D10.C23, C4×C3⋊F5 [×2], C60⋊C4 [×2], D10.D6 [×2], D5×C2×C12, (C2×C12)⋊6F5

Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], S3, C2×C4 [×6], C23, Dic3 [×4], D6 [×3], C22×C4, C4○D4 [×2], F5, C2×Dic3 [×6], C22×S3, C42⋊C2, C2×F5 [×3], C4○D12 [×2], C22×Dic3, C3⋊F5, C22×F5, C23.26D6, C2×C3⋊F5 [×3], D10.C23, C22×C3⋊F5, (C2×C12)⋊6F5

Generators and relations
 G = < a,b,c,d | a2=b12=c5=d4=1, ab=ba, ac=ca, dad-1=ab6, bc=cb, dbd-1=b5, dcd-1=c3 >

Smallest permutation representation
On 120 points
Generators in S120
(1 24)(2 13)(3 14)(4 15)(5 16)(6 17)(7 18)(8 19)(9 20)(10 21)(11 22)(12 23)(25 41)(26 42)(27 43)(28 44)(29 45)(30 46)(31 47)(32 48)(33 37)(34 38)(35 39)(36 40)(49 93)(50 94)(51 95)(52 96)(53 85)(54 86)(55 87)(56 88)(57 89)(58 90)(59 91)(60 92)(61 114)(62 115)(63 116)(64 117)(65 118)(66 119)(67 120)(68 109)(69 110)(70 111)(71 112)(72 113)(73 104)(74 105)(75 106)(76 107)(77 108)(78 97)(79 98)(80 99)(81 100)(82 101)(83 102)(84 103)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)
(1 40 114 73 89)(2 41 115 74 90)(3 42 116 75 91)(4 43 117 76 92)(5 44 118 77 93)(6 45 119 78 94)(7 46 120 79 95)(8 47 109 80 96)(9 48 110 81 85)(10 37 111 82 86)(11 38 112 83 87)(12 39 113 84 88)(13 25 62 105 58)(14 26 63 106 59)(15 27 64 107 60)(16 28 65 108 49)(17 29 66 97 50)(18 30 67 98 51)(19 31 68 99 52)(20 32 69 100 53)(21 33 70 101 54)(22 34 71 102 55)(23 35 72 103 56)(24 36 61 104 57)
(2 6)(3 11)(5 9)(8 12)(13 23)(14 16)(15 21)(17 19)(18 24)(20 22)(25 72 58 103)(26 65 59 108)(27 70 60 101)(28 63 49 106)(29 68 50 99)(30 61 51 104)(31 66 52 97)(32 71 53 102)(33 64 54 107)(34 69 55 100)(35 62 56 105)(36 67 57 98)(37 111 86 82)(38 116 87 75)(39 109 88 80)(40 114 89 73)(41 119 90 78)(42 112 91 83)(43 117 92 76)(44 110 93 81)(45 115 94 74)(46 120 95 79)(47 113 96 84)(48 118 85 77)

G:=sub<Sym(120)| (1,24)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(12,23)(25,41)(26,42)(27,43)(28,44)(29,45)(30,46)(31,47)(32,48)(33,37)(34,38)(35,39)(36,40)(49,93)(50,94)(51,95)(52,96)(53,85)(54,86)(55,87)(56,88)(57,89)(58,90)(59,91)(60,92)(61,114)(62,115)(63,116)(64,117)(65,118)(66,119)(67,120)(68,109)(69,110)(70,111)(71,112)(72,113)(73,104)(74,105)(75,106)(76,107)(77,108)(78,97)(79,98)(80,99)(81,100)(82,101)(83,102)(84,103), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,40,114,73,89)(2,41,115,74,90)(3,42,116,75,91)(4,43,117,76,92)(5,44,118,77,93)(6,45,119,78,94)(7,46,120,79,95)(8,47,109,80,96)(9,48,110,81,85)(10,37,111,82,86)(11,38,112,83,87)(12,39,113,84,88)(13,25,62,105,58)(14,26,63,106,59)(15,27,64,107,60)(16,28,65,108,49)(17,29,66,97,50)(18,30,67,98,51)(19,31,68,99,52)(20,32,69,100,53)(21,33,70,101,54)(22,34,71,102,55)(23,35,72,103,56)(24,36,61,104,57), (2,6)(3,11)(5,9)(8,12)(13,23)(14,16)(15,21)(17,19)(18,24)(20,22)(25,72,58,103)(26,65,59,108)(27,70,60,101)(28,63,49,106)(29,68,50,99)(30,61,51,104)(31,66,52,97)(32,71,53,102)(33,64,54,107)(34,69,55,100)(35,62,56,105)(36,67,57,98)(37,111,86,82)(38,116,87,75)(39,109,88,80)(40,114,89,73)(41,119,90,78)(42,112,91,83)(43,117,92,76)(44,110,93,81)(45,115,94,74)(46,120,95,79)(47,113,96,84)(48,118,85,77)>;

G:=Group( (1,24)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(12,23)(25,41)(26,42)(27,43)(28,44)(29,45)(30,46)(31,47)(32,48)(33,37)(34,38)(35,39)(36,40)(49,93)(50,94)(51,95)(52,96)(53,85)(54,86)(55,87)(56,88)(57,89)(58,90)(59,91)(60,92)(61,114)(62,115)(63,116)(64,117)(65,118)(66,119)(67,120)(68,109)(69,110)(70,111)(71,112)(72,113)(73,104)(74,105)(75,106)(76,107)(77,108)(78,97)(79,98)(80,99)(81,100)(82,101)(83,102)(84,103), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,40,114,73,89)(2,41,115,74,90)(3,42,116,75,91)(4,43,117,76,92)(5,44,118,77,93)(6,45,119,78,94)(7,46,120,79,95)(8,47,109,80,96)(9,48,110,81,85)(10,37,111,82,86)(11,38,112,83,87)(12,39,113,84,88)(13,25,62,105,58)(14,26,63,106,59)(15,27,64,107,60)(16,28,65,108,49)(17,29,66,97,50)(18,30,67,98,51)(19,31,68,99,52)(20,32,69,100,53)(21,33,70,101,54)(22,34,71,102,55)(23,35,72,103,56)(24,36,61,104,57), (2,6)(3,11)(5,9)(8,12)(13,23)(14,16)(15,21)(17,19)(18,24)(20,22)(25,72,58,103)(26,65,59,108)(27,70,60,101)(28,63,49,106)(29,68,50,99)(30,61,51,104)(31,66,52,97)(32,71,53,102)(33,64,54,107)(34,69,55,100)(35,62,56,105)(36,67,57,98)(37,111,86,82)(38,116,87,75)(39,109,88,80)(40,114,89,73)(41,119,90,78)(42,112,91,83)(43,117,92,76)(44,110,93,81)(45,115,94,74)(46,120,95,79)(47,113,96,84)(48,118,85,77) );

G=PermutationGroup([(1,24),(2,13),(3,14),(4,15),(5,16),(6,17),(7,18),(8,19),(9,20),(10,21),(11,22),(12,23),(25,41),(26,42),(27,43),(28,44),(29,45),(30,46),(31,47),(32,48),(33,37),(34,38),(35,39),(36,40),(49,93),(50,94),(51,95),(52,96),(53,85),(54,86),(55,87),(56,88),(57,89),(58,90),(59,91),(60,92),(61,114),(62,115),(63,116),(64,117),(65,118),(66,119),(67,120),(68,109),(69,110),(70,111),(71,112),(72,113),(73,104),(74,105),(75,106),(76,107),(77,108),(78,97),(79,98),(80,99),(81,100),(82,101),(83,102),(84,103)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120)], [(1,40,114,73,89),(2,41,115,74,90),(3,42,116,75,91),(4,43,117,76,92),(5,44,118,77,93),(6,45,119,78,94),(7,46,120,79,95),(8,47,109,80,96),(9,48,110,81,85),(10,37,111,82,86),(11,38,112,83,87),(12,39,113,84,88),(13,25,62,105,58),(14,26,63,106,59),(15,27,64,107,60),(16,28,65,108,49),(17,29,66,97,50),(18,30,67,98,51),(19,31,68,99,52),(20,32,69,100,53),(21,33,70,101,54),(22,34,71,102,55),(23,35,72,103,56),(24,36,61,104,57)], [(2,6),(3,11),(5,9),(8,12),(13,23),(14,16),(15,21),(17,19),(18,24),(20,22),(25,72,58,103),(26,65,59,108),(27,70,60,101),(28,63,49,106),(29,68,50,99),(30,61,51,104),(31,66,52,97),(32,71,53,102),(33,64,54,107),(34,69,55,100),(35,62,56,105),(36,67,57,98),(37,111,86,82),(38,116,87,75),(39,109,88,80),(40,114,89,73),(41,119,90,78),(42,112,91,83),(43,117,92,76),(44,110,93,81),(45,115,94,74),(46,120,95,79),(47,113,96,84),(48,118,85,77)])

Matrix representation G ⊆ GL4(𝔽61) generated by

701414
4754470
0475447
141407
,
8055
563560
056356
5508
,
60606060
1000
0100
0010
,
60000
00060
06000
1111
G:=sub<GL(4,GF(61))| [7,47,0,14,0,54,47,14,14,47,54,0,14,0,47,7],[8,56,0,5,0,3,56,5,5,56,3,0,5,0,56,8],[60,1,0,0,60,0,1,0,60,0,0,1,60,0,0,0],[60,0,0,1,0,0,60,1,0,0,0,1,0,60,0,1] >;

60 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G···4N 5 6A6B6C6D6E6F6G10A10B10C12A12B12C12D12E12F12G12H15A15B20A20B20C20D30A···30F60A···60H
order12222234444444···456666666101010121212121212121215152020202030···3060···60
size11255102112551030···304222101010104442222101010104444444···44···4

60 irreducible representations

dim111111112222222244444444
type++++++-+--++++
imageC1C2C2C2C2C4C4C4S3Dic3D6Dic3Dic3D6C4○D4C4○D12F5C2×F5C2×F5C3⋊F5C2×C3⋊F5C2×C3⋊F5D10.C23(C2×C12)⋊6F5
kernel(C2×C12)⋊6F5C4×C3⋊F5C60⋊C4D10.D6D5×C2×C12D5×C12C6×Dic5C2×C60C2×C4×D5C4×D5C4×D5C2×Dic5C2×C20C22×D5C3×D5D5C2×C12C12C2×C6C2×C4C4C22C3C1
# reps122214221221114812124248

In GAP, Magma, Sage, TeX

(C_2\times C_{12})\rtimes_6F_5
% in TeX

G:=Group("(C2xC12):6F5");
// GroupNames label

G:=SmallGroup(480,1065);
// by ID

G=gap.SmallGroup(480,1065);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,56,120,422,2693,14118,2379]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^12=c^5=d^4=1,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^6,b*c=c*b,d*b*d^-1=b^5,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽