Copied to
clipboard

?

G = A4×Dic10order 480 = 25·3·5

Direct product of A4 and Dic10

direct product, metabelian, soluble, monomial

Aliases: A4×Dic10, C5⋊(Q8×A4), (C5×A4)⋊3Q8, C4.1(D5×A4), C20.1(C2×A4), (C4×A4).3D5, (A4×C20).3C2, C22⋊(C3×Dic10), (C22×Dic10)⋊C3, (C2×A4).13D10, (C22×C20).1C6, C10.1(C22×A4), (A4×Dic5).2C2, Dic5.1(C2×A4), C23.10(C6×D5), (C10×A4).13C22, (C22×Dic5).1C6, (C2×C10)⋊(C3×Q8), C2.3(C2×D5×A4), (C22×C4).(C3×D5), (C22×C10).1(C2×C6), SmallGroup(480,1035)

Series: Derived Chief Lower central Upper central

C1C22×C10 — A4×Dic10
C1C5C2×C10C22×C10C10×A4A4×Dic5 — A4×Dic10
C2×C10C22×C10 — A4×Dic10

Subgroups: 480 in 92 conjugacy classes, 27 normal (21 characteristic)
C1, C2, C2 [×2], C3, C4, C4 [×5], C22, C22 [×2], C5, C6, C2×C4 [×6], Q8 [×6], C23, C10, C10 [×2], C12 [×3], A4, C15, C22×C4, C22×C4 [×2], C2×Q8 [×4], Dic5 [×2], Dic5 [×2], C20, C20, C2×C10, C2×C10 [×2], C3×Q8, C2×A4, C30, C22×Q8, Dic10, Dic10 [×5], C2×Dic5 [×4], C2×C20 [×2], C22×C10, C4×A4, C4×A4 [×2], C3×Dic5 [×2], C60, C5×A4, C2×Dic10 [×4], C22×Dic5 [×2], C22×C20, Q8×A4, C3×Dic10, C10×A4, C22×Dic10, A4×Dic5 [×2], A4×C20, A4×Dic10

Quotients:
C1, C2 [×3], C3, C22, C6 [×3], Q8, D5, A4, C2×C6, D10, C3×Q8, C2×A4 [×3], C3×D5, Dic10, C22×A4, C6×D5, Q8×A4, C3×Dic10, D5×A4, C2×D5×A4, A4×Dic10

Generators and relations
 G = < a,b,c,d,e | a2=b2=c3=d20=1, e2=d10, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Smallest permutation representation
On 120 points
Generators in S120
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)
(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)
(1 73 47)(2 74 48)(3 75 49)(4 76 50)(5 77 51)(6 78 52)(7 79 53)(8 80 54)(9 61 55)(10 62 56)(11 63 57)(12 64 58)(13 65 59)(14 66 60)(15 67 41)(16 68 42)(17 69 43)(18 70 44)(19 71 45)(20 72 46)(21 96 102)(22 97 103)(23 98 104)(24 99 105)(25 100 106)(26 81 107)(27 82 108)(28 83 109)(29 84 110)(30 85 111)(31 86 112)(32 87 113)(33 88 114)(34 89 115)(35 90 116)(36 91 117)(37 92 118)(38 93 119)(39 94 120)(40 95 101)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 107 11 117)(2 106 12 116)(3 105 13 115)(4 104 14 114)(5 103 15 113)(6 102 16 112)(7 101 17 111)(8 120 18 110)(9 119 19 109)(10 118 20 108)(21 68 31 78)(22 67 32 77)(23 66 33 76)(24 65 34 75)(25 64 35 74)(26 63 36 73)(27 62 37 72)(28 61 38 71)(29 80 39 70)(30 79 40 69)(41 87 51 97)(42 86 52 96)(43 85 53 95)(44 84 54 94)(45 83 55 93)(46 82 56 92)(47 81 57 91)(48 100 58 90)(49 99 59 89)(50 98 60 88)

G:=sub<Sym(120)| (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120), (21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100), (1,73,47)(2,74,48)(3,75,49)(4,76,50)(5,77,51)(6,78,52)(7,79,53)(8,80,54)(9,61,55)(10,62,56)(11,63,57)(12,64,58)(13,65,59)(14,66,60)(15,67,41)(16,68,42)(17,69,43)(18,70,44)(19,71,45)(20,72,46)(21,96,102)(22,97,103)(23,98,104)(24,99,105)(25,100,106)(26,81,107)(27,82,108)(28,83,109)(29,84,110)(30,85,111)(31,86,112)(32,87,113)(33,88,114)(34,89,115)(35,90,116)(36,91,117)(37,92,118)(38,93,119)(39,94,120)(40,95,101), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,107,11,117)(2,106,12,116)(3,105,13,115)(4,104,14,114)(5,103,15,113)(6,102,16,112)(7,101,17,111)(8,120,18,110)(9,119,19,109)(10,118,20,108)(21,68,31,78)(22,67,32,77)(23,66,33,76)(24,65,34,75)(25,64,35,74)(26,63,36,73)(27,62,37,72)(28,61,38,71)(29,80,39,70)(30,79,40,69)(41,87,51,97)(42,86,52,96)(43,85,53,95)(44,84,54,94)(45,83,55,93)(46,82,56,92)(47,81,57,91)(48,100,58,90)(49,99,59,89)(50,98,60,88)>;

G:=Group( (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120), (21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100), (1,73,47)(2,74,48)(3,75,49)(4,76,50)(5,77,51)(6,78,52)(7,79,53)(8,80,54)(9,61,55)(10,62,56)(11,63,57)(12,64,58)(13,65,59)(14,66,60)(15,67,41)(16,68,42)(17,69,43)(18,70,44)(19,71,45)(20,72,46)(21,96,102)(22,97,103)(23,98,104)(24,99,105)(25,100,106)(26,81,107)(27,82,108)(28,83,109)(29,84,110)(30,85,111)(31,86,112)(32,87,113)(33,88,114)(34,89,115)(35,90,116)(36,91,117)(37,92,118)(38,93,119)(39,94,120)(40,95,101), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,107,11,117)(2,106,12,116)(3,105,13,115)(4,104,14,114)(5,103,15,113)(6,102,16,112)(7,101,17,111)(8,120,18,110)(9,119,19,109)(10,118,20,108)(21,68,31,78)(22,67,32,77)(23,66,33,76)(24,65,34,75)(25,64,35,74)(26,63,36,73)(27,62,37,72)(28,61,38,71)(29,80,39,70)(30,79,40,69)(41,87,51,97)(42,86,52,96)(43,85,53,95)(44,84,54,94)(45,83,55,93)(46,82,56,92)(47,81,57,91)(48,100,58,90)(49,99,59,89)(50,98,60,88) );

G=PermutationGroup([(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120)], [(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100)], [(1,73,47),(2,74,48),(3,75,49),(4,76,50),(5,77,51),(6,78,52),(7,79,53),(8,80,54),(9,61,55),(10,62,56),(11,63,57),(12,64,58),(13,65,59),(14,66,60),(15,67,41),(16,68,42),(17,69,43),(18,70,44),(19,71,45),(20,72,46),(21,96,102),(22,97,103),(23,98,104),(24,99,105),(25,100,106),(26,81,107),(27,82,108),(28,83,109),(29,84,110),(30,85,111),(31,86,112),(32,87,113),(33,88,114),(34,89,115),(35,90,116),(36,91,117),(37,92,118),(38,93,119),(39,94,120),(40,95,101)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,107,11,117),(2,106,12,116),(3,105,13,115),(4,104,14,114),(5,103,15,113),(6,102,16,112),(7,101,17,111),(8,120,18,110),(9,119,19,109),(10,118,20,108),(21,68,31,78),(22,67,32,77),(23,66,33,76),(24,65,34,75),(25,64,35,74),(26,63,36,73),(27,62,37,72),(28,61,38,71),(29,80,39,70),(30,79,40,69),(41,87,51,97),(42,86,52,96),(43,85,53,95),(44,84,54,94),(45,83,55,93),(46,82,56,92),(47,81,57,91),(48,100,58,90),(49,99,59,89),(50,98,60,88)])

Matrix representation G ⊆ GL5(𝔽61)

10000
01000
00001
00606060
00100
,
10000
01000
00010
00100
00606060
,
10000
01000
004700
000047
00141414
,
2731000
314000
006000
000600
000060
,
5614000
335000
00100
00010
00001

G:=sub<GL(5,GF(61))| [1,0,0,0,0,0,1,0,0,0,0,0,0,60,1,0,0,0,60,0,0,0,1,60,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,60,0,0,1,0,60,0,0,0,0,60],[1,0,0,0,0,0,1,0,0,0,0,0,47,0,14,0,0,0,0,14,0,0,0,47,14],[27,31,0,0,0,31,4,0,0,0,0,0,60,0,0,0,0,0,60,0,0,0,0,0,60],[56,33,0,0,0,14,5,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1] >;

52 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D4E4F5A5B6A6B10A10B10C10D10E10F12A12B12C12D12E12F15A15B15C15D20A20B20C20D20E20F20G20H30A30B30C30D60A···60H
order12223344444455661010101010101212121212121515151520202020202020203030303060···60
size11334426101030302244226666884040404088882222666688888···8

52 irreducible representations

dim111111222222223336666
type+++-++-+++-++-
imageC1C2C2C3C6C6Q8D5D10C3×Q8C3×D5Dic10C6×D5C3×Dic10A4C2×A4C2×A4Q8×A4D5×A4C2×D5×A4A4×Dic10
kernelA4×Dic10A4×Dic5A4×C20C22×Dic10C22×Dic5C22×C20C5×A4C4×A4C2×A4C2×C10C22×C4A4C23C22Dic10Dic5C20C5C4C2C1
# reps121242122244481211224

In GAP, Magma, Sage, TeX

A_4\times Dic_{10}
% in TeX

G:=Group("A4xDic10");
// GroupNames label

G:=SmallGroup(480,1035);
// by ID

G=gap.SmallGroup(480,1035);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,2,-5,84,197,92,648,271,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^20=1,e^2=d^10,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽