Extensions 1→N→G→Q→1 with N=C4×D5 and Q=C2×C6

Direct product G=N×Q with N=C4×D5 and Q=C2×C6
dρLabelID
D5×C22×C12240D5xC2^2xC12480,1136

Semidirect products G=N:Q with N=C4×D5 and Q=C2×C6
extensionφ:Q→Out NdρLabelID
(C4×D5)⋊1(C2×C6) = C3×D46D10φ: C2×C6/C3C22 ⊆ Out C4×D51204(C4xD5):1(C2xC6)480,1141
(C4×D5)⋊2(C2×C6) = C3×D48D10φ: C2×C6/C3C22 ⊆ Out C4×D51204(C4xD5):2(C2xC6)480,1146
(C4×D5)⋊3(C2×C6) = C6×D4×D5φ: C2×C6/C6C2 ⊆ Out C4×D5120(C4xD5):3(C2xC6)480,1139
(C4×D5)⋊4(C2×C6) = C6×D42D5φ: C2×C6/C6C2 ⊆ Out C4×D5240(C4xD5):4(C2xC6)480,1140
(C4×D5)⋊5(C2×C6) = C6×Q82D5φ: C2×C6/C6C2 ⊆ Out C4×D5240(C4xD5):5(C2xC6)480,1143
(C4×D5)⋊6(C2×C6) = C6×C4○D20φ: C2×C6/C6C2 ⊆ Out C4×D5240(C4xD5):6(C2xC6)480,1138
(C4×D5)⋊7(C2×C6) = C3×D5×C4○D4φ: C2×C6/C6C2 ⊆ Out C4×D51204(C4xD5):7(C2xC6)480,1145

Non-split extensions G=N.Q with N=C4×D5 and Q=C2×C6
extensionφ:Q→Out NdρLabelID
(C4×D5).1(C2×C6) = C3×D8⋊D5φ: C2×C6/C3C22 ⊆ Out C4×D51204(C4xD5).1(C2xC6)480,704
(C4×D5).2(C2×C6) = C3×D40⋊C2φ: C2×C6/C3C22 ⊆ Out C4×D51204(C4xD5).2(C2xC6)480,707
(C4×D5).3(C2×C6) = C3×SD16⋊D5φ: C2×C6/C3C22 ⊆ Out C4×D52404(C4xD5).3(C2xC6)480,708
(C4×D5).4(C2×C6) = C3×Q16⋊D5φ: C2×C6/C3C22 ⊆ Out C4×D52404(C4xD5).4(C2xC6)480,711
(C4×D5).5(C2×C6) = C3×Q8.10D10φ: C2×C6/C3C22 ⊆ Out C4×D52404(C4xD5).5(C2xC6)480,1144
(C4×D5).6(C2×C6) = C3×D4.10D10φ: C2×C6/C3C22 ⊆ Out C4×D52404(C4xD5).6(C2xC6)480,1147
(C4×D5).7(C2×C6) = C3×D20⋊C4φ: C2×C6/C3C22 ⊆ Out C4×D51208(C4xD5).7(C2xC6)480,287
(C4×D5).8(C2×C6) = C3×D4⋊F5φ: C2×C6/C3C22 ⊆ Out C4×D51208(C4xD5).8(C2xC6)480,288
(C4×D5).9(C2×C6) = C3×Q8⋊F5φ: C2×C6/C3C22 ⊆ Out C4×D51208(C4xD5).9(C2xC6)480,289
(C4×D5).10(C2×C6) = C3×Q82F5φ: C2×C6/C3C22 ⊆ Out C4×D51208(C4xD5).10(C2xC6)480,290
(C4×D5).11(C2×C6) = C3×D4.F5φ: C2×C6/C3C22 ⊆ Out C4×D52408(C4xD5).11(C2xC6)480,1053
(C4×D5).12(C2×C6) = C3×D4×F5φ: C2×C6/C3C22 ⊆ Out C4×D5608(C4xD5).12(C2xC6)480,1054
(C4×D5).13(C2×C6) = C3×Q8.F5φ: C2×C6/C3C22 ⊆ Out C4×D52408(C4xD5).13(C2xC6)480,1055
(C4×D5).14(C2×C6) = C3×Q8×F5φ: C2×C6/C3C22 ⊆ Out C4×D51208(C4xD5).14(C2xC6)480,1056
(C4×D5).15(C2×C6) = C3×D5×D8φ: C2×C6/C6C2 ⊆ Out C4×D51204(C4xD5).15(C2xC6)480,703
(C4×D5).16(C2×C6) = C3×D83D5φ: C2×C6/C6C2 ⊆ Out C4×D52404(C4xD5).16(C2xC6)480,705
(C4×D5).17(C2×C6) = C3×D5×SD16φ: C2×C6/C6C2 ⊆ Out C4×D51204(C4xD5).17(C2xC6)480,706
(C4×D5).18(C2×C6) = C3×SD163D5φ: C2×C6/C6C2 ⊆ Out C4×D52404(C4xD5).18(C2xC6)480,709
(C4×D5).19(C2×C6) = C3×D5×Q16φ: C2×C6/C6C2 ⊆ Out C4×D52404(C4xD5).19(C2xC6)480,710
(C4×D5).20(C2×C6) = C3×Q8.D10φ: C2×C6/C6C2 ⊆ Out C4×D52404(C4xD5).20(C2xC6)480,712
(C4×D5).21(C2×C6) = C6×Q8×D5φ: C2×C6/C6C2 ⊆ Out C4×D5240(C4xD5).21(C2xC6)480,1142
(C4×D5).22(C2×C6) = C6×C8⋊D5φ: C2×C6/C6C2 ⊆ Out C4×D5240(C4xD5).22(C2xC6)480,693
(C4×D5).23(C2×C6) = C3×D20.3C4φ: C2×C6/C6C2 ⊆ Out C4×D52402(C4xD5).23(C2xC6)480,694
(C4×D5).24(C2×C6) = C3×D20.2C4φ: C2×C6/C6C2 ⊆ Out C4×D52404(C4xD5).24(C2xC6)480,700
(C4×D5).25(C2×C6) = C3×C40⋊C4φ: C2×C6/C6C2 ⊆ Out C4×D51204(C4xD5).25(C2xC6)480,273
(C4×D5).26(C2×C6) = C3×D5.D8φ: C2×C6/C6C2 ⊆ Out C4×D51204(C4xD5).26(C2xC6)480,274
(C4×D5).27(C2×C6) = C3×C40.C4φ: C2×C6/C6C2 ⊆ Out C4×D52404(C4xD5).27(C2xC6)480,275
(C4×D5).28(C2×C6) = C3×D10.Q8φ: C2×C6/C6C2 ⊆ Out C4×D52404(C4xD5).28(C2xC6)480,276
(C4×D5).29(C2×C6) = C6×C4.F5φ: C2×C6/C6C2 ⊆ Out C4×D5240(C4xD5).29(C2xC6)480,1048
(C4×D5).30(C2×C6) = C3×D5⋊M4(2)φ: C2×C6/C6C2 ⊆ Out C4×D51204(C4xD5).30(C2xC6)480,1049
(C4×D5).31(C2×C6) = C6×C4⋊F5φ: C2×C6/C6C2 ⊆ Out C4×D5120(C4xD5).31(C2xC6)480,1051
(C4×D5).32(C2×C6) = F5×C24φ: C2×C6/C6C2 ⊆ Out C4×D51204(C4xD5).32(C2xC6)480,271
(C4×D5).33(C2×C6) = C3×C8⋊F5φ: C2×C6/C6C2 ⊆ Out C4×D51204(C4xD5).33(C2xC6)480,272
(C4×D5).34(C2×C6) = C6×D5⋊C8φ: C2×C6/C6C2 ⊆ Out C4×D5240(C4xD5).34(C2xC6)480,1047
(C4×D5).35(C2×C6) = F5×C2×C12φ: C2×C6/C6C2 ⊆ Out C4×D5120(C4xD5).35(C2xC6)480,1050
(C4×D5).36(C2×C6) = C3×D10.C23φ: C2×C6/C6C2 ⊆ Out C4×D51204(C4xD5).36(C2xC6)480,1052
(C4×D5).37(C2×C6) = D5×C2×C24φ: trivial image240(C4xD5).37(C2xC6)480,692
(C4×D5).38(C2×C6) = C3×D5×M4(2)φ: trivial image1204(C4xD5).38(C2xC6)480,699

׿
×
𝔽