Direct product G=NxQ with N=C4 and Q=SD16
Semidirect products G=N:Q with N=C4 and Q=SD16
Non-split extensions G=N.Q with N=C4 and Q=SD16
extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1SD16 = C2.D16 | φ: SD16/C8 → C2 ⊆ Aut C4 | 32 | | C4.1SD16 | 64,38 |
C4.2SD16 = C2.Q32 | φ: SD16/C8 → C2 ⊆ Aut C4 | 64 | | C4.2SD16 | 64,39 |
C4.3SD16 = C4.4D8 | φ: SD16/C8 → C2 ⊆ Aut C4 | 32 | | C4.3SD16 | 64,167 |
C4.4SD16 = C4.SD16 | φ: SD16/C8 → C2 ⊆ Aut C4 | 64 | | C4.4SD16 | 64,168 |
C4.5SD16 = C8:3Q8 | φ: SD16/C8 → C2 ⊆ Aut C4 | 64 | | C4.5SD16 | 64,179 |
C4.6SD16 = C4.10D8 | φ: SD16/D4 → C2 ⊆ Aut C4 | 64 | | C4.6SD16 | 64,13 |
C4.7SD16 = C4.6Q16 | φ: SD16/D4 → C2 ⊆ Aut C4 | 64 | | C4.7SD16 | 64,14 |
C4.8SD16 = D8:2C4 | φ: SD16/D4 → C2 ⊆ Aut C4 | 16 | 4 | C4.8SD16 | 64,41 |
C4.9SD16 = C8.Q8 | φ: SD16/D4 → C2 ⊆ Aut C4 | 16 | 4 | C4.9SD16 | 64,46 |
C4.10SD16 = D4:2Q8 | φ: SD16/D4 → C2 ⊆ Aut C4 | 32 | | C4.10SD16 | 64,157 |
C4.11SD16 = C4.D8 | φ: SD16/Q8 → C2 ⊆ Aut C4 | 32 | | C4.11SD16 | 64,12 |
C4.12SD16 = Q8:Q8 | φ: SD16/Q8 → C2 ⊆ Aut C4 | 64 | | C4.12SD16 | 64,156 |
C4.13SD16 = D4:C8 | central extension (φ=1) | 32 | | C4.13SD16 | 64,6 |
C4.14SD16 = Q8:C8 | central extension (φ=1) | 64 | | C4.14SD16 | 64,7 |
C4.15SD16 = C8:2C8 | central extension (φ=1) | 64 | | C4.15SD16 | 64,15 |
x
:
Z
F
o
wr
Q
<