Copied to
clipboard

G = C4×C3⋊D4order 96 = 25·3

Direct product of C4 and C3⋊D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4×C3⋊D4, C128D4, C23.27D6, C34(C4×D4), D64(C2×C4), C43(D6⋊C4), D6⋊C418C2, (C22×C4)⋊4S3, C223(C4×S3), C6.41(C2×D4), (C22×C12)⋊9C2, Dic32(C2×C4), (C2×C4).103D6, C43(Dic3⋊C4), Dic3⋊C418C2, (C4×Dic3)⋊16C2, C6.17(C4○D4), C2.5(C4○D12), (C2×C6).46C23, C6.19(C22×C4), C42(C6.D4), C6.D414C2, (C2×C12).77C22, (C22×C6).38C22, C22.24(C22×S3), (C22×S3).24C22, (C2×Dic3).36C22, (S3×C2×C4)⋊14C2, (C2×C6)⋊5(C2×C4), C2.20(S3×C2×C4), C2.3(C2×C3⋊D4), (C2×C3⋊D4).7C2, (C2×C4)(C6.D4), SmallGroup(96,135)

Series: Derived Chief Lower central Upper central

C1C6 — C4×C3⋊D4
C1C3C6C2×C6C22×S3C2×C3⋊D4 — C4×C3⋊D4
C3C6 — C4×C3⋊D4
C1C2×C4C22×C4

Generators and relations for C4×C3⋊D4
 G = < a,b,c,d | a4=b3=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 194 in 94 conjugacy classes, 45 normal (29 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, C23, C23, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C4×S3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C22×S3, C22×C6, C4×D4, C4×Dic3, Dic3⋊C4, D6⋊C4, C6.D4, S3×C2×C4, C2×C3⋊D4, C22×C12, C4×C3⋊D4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, C22×C4, C2×D4, C4○D4, C4×S3, C3⋊D4, C22×S3, C4×D4, S3×C2×C4, C4○D12, C2×C3⋊D4, C4×C3⋊D4

Smallest permutation representation of C4×C3⋊D4
On 48 points
Generators in S48
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 37 23)(2 38 24)(3 39 21)(4 40 22)(5 36 46)(6 33 47)(7 34 48)(8 35 45)(9 29 27)(10 30 28)(11 31 25)(12 32 26)(13 43 17)(14 44 18)(15 41 19)(16 42 20)
(1 47 27 14)(2 48 28 15)(3 45 25 16)(4 46 26 13)(5 32 43 22)(6 29 44 23)(7 30 41 24)(8 31 42 21)(9 18 37 33)(10 19 38 34)(11 20 39 35)(12 17 40 36)
(1 3)(2 4)(5 19)(6 20)(7 17)(8 18)(9 31)(10 32)(11 29)(12 30)(13 48)(14 45)(15 46)(16 47)(21 37)(22 38)(23 39)(24 40)(25 27)(26 28)(33 42)(34 43)(35 44)(36 41)

G:=sub<Sym(48)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,37,23)(2,38,24)(3,39,21)(4,40,22)(5,36,46)(6,33,47)(7,34,48)(8,35,45)(9,29,27)(10,30,28)(11,31,25)(12,32,26)(13,43,17)(14,44,18)(15,41,19)(16,42,20), (1,47,27,14)(2,48,28,15)(3,45,25,16)(4,46,26,13)(5,32,43,22)(6,29,44,23)(7,30,41,24)(8,31,42,21)(9,18,37,33)(10,19,38,34)(11,20,39,35)(12,17,40,36), (1,3)(2,4)(5,19)(6,20)(7,17)(8,18)(9,31)(10,32)(11,29)(12,30)(13,48)(14,45)(15,46)(16,47)(21,37)(22,38)(23,39)(24,40)(25,27)(26,28)(33,42)(34,43)(35,44)(36,41)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,37,23)(2,38,24)(3,39,21)(4,40,22)(5,36,46)(6,33,47)(7,34,48)(8,35,45)(9,29,27)(10,30,28)(11,31,25)(12,32,26)(13,43,17)(14,44,18)(15,41,19)(16,42,20), (1,47,27,14)(2,48,28,15)(3,45,25,16)(4,46,26,13)(5,32,43,22)(6,29,44,23)(7,30,41,24)(8,31,42,21)(9,18,37,33)(10,19,38,34)(11,20,39,35)(12,17,40,36), (1,3)(2,4)(5,19)(6,20)(7,17)(8,18)(9,31)(10,32)(11,29)(12,30)(13,48)(14,45)(15,46)(16,47)(21,37)(22,38)(23,39)(24,40)(25,27)(26,28)(33,42)(34,43)(35,44)(36,41) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,37,23),(2,38,24),(3,39,21),(4,40,22),(5,36,46),(6,33,47),(7,34,48),(8,35,45),(9,29,27),(10,30,28),(11,31,25),(12,32,26),(13,43,17),(14,44,18),(15,41,19),(16,42,20)], [(1,47,27,14),(2,48,28,15),(3,45,25,16),(4,46,26,13),(5,32,43,22),(6,29,44,23),(7,30,41,24),(8,31,42,21),(9,18,37,33),(10,19,38,34),(11,20,39,35),(12,17,40,36)], [(1,3),(2,4),(5,19),(6,20),(7,17),(8,18),(9,31),(10,32),(11,29),(12,30),(13,48),(14,45),(15,46),(16,47),(21,37),(22,38),(23,39),(24,40),(25,27),(26,28),(33,42),(34,43),(35,44),(36,41)]])

C4×C3⋊D4 is a maximal subgroup of
C3⋊D4⋊C8  D62M4(2)  Dic3⋊M4(2)  C3⋊C826D4  C2433D4  C24⋊D4  C2421D4  C42.277D6  C24.35D6  C24.38D6  C24.41D6  C24.42D6  C6.82+ 1+4  C6.2- 1+4  C6.102+ 1+4  C6.52- 1+4  C6.112+ 1+4  C6.62- 1+4  C42.93D6  C42.94D6  C42.95D6  C42.97D6  C42.98D6  C42.102D6  C42.104D6  C4×S3×D4  C4213D6  C42.108D6  C4214D6  C42.228D6  C4218D6  C42.229D6  C42.113D6  C42.114D6  C4219D6  C42.118D6  Dic619D4  Dic620D4  C6.342+ 1+4  D1219D4  C6.402+ 1+4  C6.732- 1+4  D1220D4  C6.422+ 1+4  C6.432+ 1+4  C6.442+ 1+4  C6.452+ 1+4  C6.1152+ 1+4  D1221D4  D1222D4  Dic621D4  Dic622D4  C6.1182+ 1+4  C6.522+ 1+4  C6.532+ 1+4  C6.202- 1+4  C6.212- 1+4  C6.222- 1+4  C6.232- 1+4  C6.772- 1+4  C6.612+ 1+4  C6.622+ 1+4  C6.632+ 1+4  C6.642+ 1+4  C6.652+ 1+4  C6.662+ 1+4  C6.672+ 1+4  C24.83D6  C24.53D6  C6.452- 1+4  C6.1042- 1+4  (C2×D4)⋊43D6  C6.1452+ 1+4  C6.1072- 1+4  (C2×C12)⋊17D4  C6.1482+ 1+4  C62.49C23  C62.74C23  C62.94C23  D6⋊(C4×D5)  C1520(C4×D4)  C1526(C4×D4)
C4×C3⋊D4 is a maximal quotient of
(C2×C42).6S3  (C2×C42)⋊3S3  C24.14D6  C24.15D6  C24.23D6  C24.24D6  Dic3⋊(C4⋊C4)  C6.67(C4×D4)  D6⋊C46C4  D6⋊C47C4  C42.48D6  C42.51D6  C42.56D6  C42.59D6  C2433D4  C24⋊D4  C2421D4  C24.100D4  C24.54D4  C24.73D6  C24.76D6  C62.49C23  C62.74C23  C62.94C23  D6⋊(C4×D5)  C1520(C4×D4)  C1526(C4×D4)

36 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G···4L6A···6G12A···12H
order1222222234444444···46···612···12
size1111226621111226···62···22···2

36 irreducible representations

dim11111111122222222
type++++++++++++
imageC1C2C2C2C2C2C2C2C4S3D4D6D6C4○D4C3⋊D4C4×S3C4○D12
kernelC4×C3⋊D4C4×Dic3Dic3⋊C4D6⋊C4C6.D4S3×C2×C4C2×C3⋊D4C22×C12C3⋊D4C22×C4C12C2×C4C23C6C4C22C2
# reps11111111812212444

Matrix representation of C4×C3⋊D4 in GL3(𝔽13) generated by

800
0120
0012
,
100
01212
010
,
1200
0119
0112
,
100
010
01212
G:=sub<GL(3,GF(13))| [8,0,0,0,12,0,0,0,12],[1,0,0,0,12,1,0,12,0],[12,0,0,0,11,11,0,9,2],[1,0,0,0,1,12,0,0,12] >;

C4×C3⋊D4 in GAP, Magma, Sage, TeX

C_4\times C_3\rtimes D_4
% in TeX

G:=Group("C4xC3:D4");
// GroupNames label

G:=SmallGroup(96,135);
// by ID

G=gap.SmallGroup(96,135);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,217,50,2309]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^3=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽