p-group, metabelian, nilpotent (class 3), monomial
Aliases: (C2×C8).200D4, C4.125(C4×D4), D4⋊C4⋊11C4, C2.3(C8⋊2D4), C2.5(C8⋊D4), (C22×C4).131D4, C22.170(C4×D4), C23.787(C2×D4), C2.10(D8⋊C4), C22.4Q16⋊49C2, C4.4(C42⋊2C2), C4.10(C42⋊C2), C22.88(C8⋊C22), (C2×C42).303C22, (C22×C8).398C22, (C22×D4).40C22, C2.17(SD16⋊C4), C22.133(C4⋊D4), (C22×C4).1387C23, C23.65C23⋊4C2, C22.61(C4.4D4), C4.95(C22.D4), C22.77(C8.C22), C24.3C22.9C2, C2.3(C42.28C22), C2.2(C42.29C22), C2.21(C24.C22), C4⋊C4.84(C2×C4), (C2×C8⋊C4)⋊24C2, (C2×C8).147(C2×C4), (C2×D4).100(C2×C4), (C2×C4).1344(C2×D4), (C2×C4⋊C4).73C22, (C2×D4⋊C4).34C2, (C2×C4).582(C4○D4), (C2×C4).405(C22×C4), SmallGroup(128,668)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for (C2×C8).200D4
G = < a,b,c,d | a2=b8=c4=1, d2=a, ab=ba, ac=ca, ad=da, cbc-1=ab3, dbd-1=ab-1, dcd-1=b6c-1 >
Subgroups: 340 in 142 conjugacy classes, 56 normal (44 characteristic)
C1, C2 [×7], C2 [×2], C4 [×4], C4 [×6], C22 [×7], C22 [×10], C8 [×4], C2×C4 [×6], C2×C4 [×16], D4 [×6], C23, C23 [×8], C42 [×2], C22⋊C4 [×4], C4⋊C4 [×2], C4⋊C4 [×7], C2×C8 [×4], C2×C8 [×4], C22×C4 [×3], C22×C4 [×3], C2×D4 [×2], C2×D4 [×5], C24, C2.C42, C8⋊C4 [×2], D4⋊C4 [×4], D4⋊C4 [×2], C2×C42, C2×C22⋊C4 [×2], C2×C4⋊C4 [×3], C2×C4⋊C4, C22×C8 [×2], C22×D4, C22.4Q16 [×2], C23.65C23, C24.3C22, C2×C8⋊C4, C2×D4⋊C4 [×2], (C2×C8).200D4
Quotients: C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], D4 [×4], C23, C22×C4, C2×D4 [×2], C4○D4 [×4], C42⋊C2, C4×D4 [×2], C4⋊D4, C22.D4, C4.4D4, C42⋊2C2, C8⋊C22 [×3], C8.C22, C24.C22, SD16⋊C4, D8⋊C4, C8⋊D4, C8⋊2D4, C42.28C22, C42.29C22, (C2×C8).200D4
(1 50)(2 51)(3 52)(4 53)(5 54)(6 55)(7 56)(8 49)(9 47)(10 48)(11 41)(12 42)(13 43)(14 44)(15 45)(16 46)(17 27)(18 28)(19 29)(20 30)(21 31)(22 32)(23 25)(24 26)(33 57)(34 58)(35 59)(36 60)(37 61)(38 62)(39 63)(40 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 22 39 11)(2 27 40 44)(3 20 33 9)(4 25 34 42)(5 18 35 15)(6 31 36 48)(7 24 37 13)(8 29 38 46)(10 55 21 60)(12 53 23 58)(14 51 17 64)(16 49 19 62)(26 61 43 56)(28 59 45 54)(30 57 47 52)(32 63 41 50)
(1 8 50 49)(2 56 51 7)(3 6 52 55)(4 54 53 5)(9 25 47 23)(10 22 48 32)(11 31 41 21)(12 20 42 30)(13 29 43 19)(14 18 44 28)(15 27 45 17)(16 24 46 26)(33 36 57 60)(34 59 58 35)(37 40 61 64)(38 63 62 39)
G:=sub<Sym(64)| (1,50)(2,51)(3,52)(4,53)(5,54)(6,55)(7,56)(8,49)(9,47)(10,48)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,27)(18,28)(19,29)(20,30)(21,31)(22,32)(23,25)(24,26)(33,57)(34,58)(35,59)(36,60)(37,61)(38,62)(39,63)(40,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,22,39,11)(2,27,40,44)(3,20,33,9)(4,25,34,42)(5,18,35,15)(6,31,36,48)(7,24,37,13)(8,29,38,46)(10,55,21,60)(12,53,23,58)(14,51,17,64)(16,49,19,62)(26,61,43,56)(28,59,45,54)(30,57,47,52)(32,63,41,50), (1,8,50,49)(2,56,51,7)(3,6,52,55)(4,54,53,5)(9,25,47,23)(10,22,48,32)(11,31,41,21)(12,20,42,30)(13,29,43,19)(14,18,44,28)(15,27,45,17)(16,24,46,26)(33,36,57,60)(34,59,58,35)(37,40,61,64)(38,63,62,39)>;
G:=Group( (1,50)(2,51)(3,52)(4,53)(5,54)(6,55)(7,56)(8,49)(9,47)(10,48)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,27)(18,28)(19,29)(20,30)(21,31)(22,32)(23,25)(24,26)(33,57)(34,58)(35,59)(36,60)(37,61)(38,62)(39,63)(40,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,22,39,11)(2,27,40,44)(3,20,33,9)(4,25,34,42)(5,18,35,15)(6,31,36,48)(7,24,37,13)(8,29,38,46)(10,55,21,60)(12,53,23,58)(14,51,17,64)(16,49,19,62)(26,61,43,56)(28,59,45,54)(30,57,47,52)(32,63,41,50), (1,8,50,49)(2,56,51,7)(3,6,52,55)(4,54,53,5)(9,25,47,23)(10,22,48,32)(11,31,41,21)(12,20,42,30)(13,29,43,19)(14,18,44,28)(15,27,45,17)(16,24,46,26)(33,36,57,60)(34,59,58,35)(37,40,61,64)(38,63,62,39) );
G=PermutationGroup([(1,50),(2,51),(3,52),(4,53),(5,54),(6,55),(7,56),(8,49),(9,47),(10,48),(11,41),(12,42),(13,43),(14,44),(15,45),(16,46),(17,27),(18,28),(19,29),(20,30),(21,31),(22,32),(23,25),(24,26),(33,57),(34,58),(35,59),(36,60),(37,61),(38,62),(39,63),(40,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,22,39,11),(2,27,40,44),(3,20,33,9),(4,25,34,42),(5,18,35,15),(6,31,36,48),(7,24,37,13),(8,29,38,46),(10,55,21,60),(12,53,23,58),(14,51,17,64),(16,49,19,62),(26,61,43,56),(28,59,45,54),(30,57,47,52),(32,63,41,50)], [(1,8,50,49),(2,56,51,7),(3,6,52,55),(4,54,53,5),(9,25,47,23),(10,22,48,32),(11,31,41,21),(12,20,42,30),(13,29,43,19),(14,18,44,28),(15,27,45,17),(16,24,46,26),(33,36,57,60),(34,59,58,35),(37,40,61,64),(38,63,62,39)])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | ··· | 4N | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | C4○D4 | C8⋊C22 | C8.C22 |
kernel | (C2×C8).200D4 | C22.4Q16 | C23.65C23 | C24.3C22 | C2×C8⋊C4 | C2×D4⋊C4 | D4⋊C4 | C2×C8 | C22×C4 | C2×C4 | C22 | C22 |
# reps | 1 | 2 | 1 | 1 | 1 | 2 | 8 | 2 | 2 | 8 | 3 | 1 |
Matrix representation of (C2×C8).200D4 ►in GL8(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 8 | 8 | 14 | 0 |
0 | 0 | 0 | 0 | 9 | 8 | 0 | 14 |
0 | 0 | 0 | 0 | 0 | 14 | 9 | 9 |
0 | 0 | 0 | 0 | 3 | 0 | 8 | 9 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 14 | 0 | 9 | 8 |
0 | 0 | 0 | 0 | 0 | 3 | 8 | 8 |
0 | 0 | 0 | 0 | 9 | 8 | 0 | 14 |
0 | 0 | 0 | 0 | 8 | 8 | 14 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 8 | 8 | 14 | 0 |
0 | 0 | 0 | 0 | 8 | 9 | 0 | 3 |
0 | 0 | 0 | 0 | 14 | 0 | 9 | 8 |
0 | 0 | 0 | 0 | 0 | 3 | 8 | 8 |
G:=sub<GL(8,GF(17))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,13,4,0,0,0,0,0,0,9,4,0,0,0,0,0,0,0,0,8,9,0,3,0,0,0,0,8,8,14,0,0,0,0,0,14,0,9,8,0,0,0,0,0,14,9,9],[0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,13,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,14,0,9,8,0,0,0,0,0,3,8,8,0,0,0,0,9,8,0,14,0,0,0,0,8,8,14,0],[16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,8,13,0,0,0,0,0,0,0,0,8,8,14,0,0,0,0,0,8,9,0,3,0,0,0,0,14,0,9,8,0,0,0,0,0,3,8,8] >;
(C2×C8).200D4 in GAP, Magma, Sage, TeX
(C_2\times C_8)._{200}D_4
% in TeX
G:=Group("(C2xC8).200D4");
// GroupNames label
G:=SmallGroup(128,668);
// by ID
G=gap.SmallGroup(128,668);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,736,422,723,58,2019,248,2804,172]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^8=c^4=1,d^2=a,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=a*b^3,d*b*d^-1=a*b^-1,d*c*d^-1=b^6*c^-1>;
// generators/relations