p-group, metabelian, nilpotent (class 3), monomial
Aliases: (C2×C8).55D4, (C2×D4).119D4, (C2×Q8).110D4, C4.C42⋊13C2, C4.57(C4.4D4), C22.C42⋊24C2, C2.22(D4.4D4), C2.22(D4.5D4), C23.282(C4○D4), (C22×C4).737C23, (C22×C8).117C22, C22.254(C4⋊D4), C23.36D4.12C2, C22.16(C42⋊2C2), C4.113(C22.D4), C2.13(C23.11D4), (C2×M4(2)).235C22, (C2×C2.D8)⋊12C2, (C2×C4).84(C4○D4), (C2×C4).1376(C2×D4), (C2×C4⋊C4).152C22, (C22×C8)⋊C2.6C2, (C2×C4○D4).67C22, SmallGroup(128,810)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for (C2×C8).55D4
G = < a,b,c,d | a2=b8=d2=1, c4=b4, dbd=ab=ba, ac=ca, ad=da, cbc-1=ab-1, dcd=ab4c3 >
Subgroups: 216 in 99 conjugacy classes, 38 normal (22 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C22⋊C8, D4⋊C4, Q8⋊C4, C2.D8, C2×C4⋊C4, C22×C8, C2×M4(2), C2×M4(2), C2×C4○D4, C4.C42, C22.C42, (C22×C8)⋊C2, C23.36D4, C2×C2.D8, (C2×C8).55D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C4⋊D4, C22.D4, C4.4D4, C42⋊2C2, C23.11D4, D4.4D4, D4.5D4, (C2×C8).55D4
Character table of (C2×C8).55D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | -2 | 2 | -2 | 2 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ14 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | complex lifted from C4○D4 |
ρ15 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | complex lifted from C4○D4 |
ρ16 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | -2i | 0 | complex lifted from C4○D4 |
ρ17 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 2i | complex lifted from C4○D4 |
ρ18 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 2i | 0 | complex lifted from C4○D4 |
ρ19 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | -2 | 2 | 2 | -2 | 2i | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ20 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | -2 | 2 | -2 | 2 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ21 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | -2i | complex lifted from C4○D4 |
ρ22 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | -2 | 2 | 2 | -2 | -2i | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4.4D4 |
ρ24 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4.4D4 |
ρ25 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 0 | 0 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.5D4, Schur index 2 |
ρ26 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 0 | 0 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.5D4, Schur index 2 |
(1 16)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(8 15)(17 44)(18 45)(19 46)(20 47)(21 48)(22 41)(23 42)(24 43)(25 49)(26 50)(27 51)(28 52)(29 53)(30 54)(31 55)(32 56)(33 59)(34 60)(35 61)(36 62)(37 63)(38 64)(39 57)(40 58)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 21 31 63 5 17 27 59)(2 47 32 36 6 43 28 40)(3 19 25 61 7 23 29 57)(4 45 26 34 8 41 30 38)(9 20 56 62 13 24 52 58)(10 46 49 35 14 42 53 39)(11 18 50 60 15 22 54 64)(12 44 51 33 16 48 55 37)
(2 9)(4 11)(6 13)(8 15)(17 37)(18 64)(19 39)(20 58)(21 33)(22 60)(23 35)(24 62)(25 29)(26 54)(27 31)(28 56)(30 50)(32 52)(34 41)(36 43)(38 45)(40 47)(42 61)(44 63)(46 57)(48 59)(49 53)(51 55)
G:=sub<Sym(64)| (1,16)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(17,44)(18,45)(19,46)(20,47)(21,48)(22,41)(23,42)(24,43)(25,49)(26,50)(27,51)(28,52)(29,53)(30,54)(31,55)(32,56)(33,59)(34,60)(35,61)(36,62)(37,63)(38,64)(39,57)(40,58), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,21,31,63,5,17,27,59)(2,47,32,36,6,43,28,40)(3,19,25,61,7,23,29,57)(4,45,26,34,8,41,30,38)(9,20,56,62,13,24,52,58)(10,46,49,35,14,42,53,39)(11,18,50,60,15,22,54,64)(12,44,51,33,16,48,55,37), (2,9)(4,11)(6,13)(8,15)(17,37)(18,64)(19,39)(20,58)(21,33)(22,60)(23,35)(24,62)(25,29)(26,54)(27,31)(28,56)(30,50)(32,52)(34,41)(36,43)(38,45)(40,47)(42,61)(44,63)(46,57)(48,59)(49,53)(51,55)>;
G:=Group( (1,16)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(17,44)(18,45)(19,46)(20,47)(21,48)(22,41)(23,42)(24,43)(25,49)(26,50)(27,51)(28,52)(29,53)(30,54)(31,55)(32,56)(33,59)(34,60)(35,61)(36,62)(37,63)(38,64)(39,57)(40,58), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,21,31,63,5,17,27,59)(2,47,32,36,6,43,28,40)(3,19,25,61,7,23,29,57)(4,45,26,34,8,41,30,38)(9,20,56,62,13,24,52,58)(10,46,49,35,14,42,53,39)(11,18,50,60,15,22,54,64)(12,44,51,33,16,48,55,37), (2,9)(4,11)(6,13)(8,15)(17,37)(18,64)(19,39)(20,58)(21,33)(22,60)(23,35)(24,62)(25,29)(26,54)(27,31)(28,56)(30,50)(32,52)(34,41)(36,43)(38,45)(40,47)(42,61)(44,63)(46,57)(48,59)(49,53)(51,55) );
G=PermutationGroup([[(1,16),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(8,15),(17,44),(18,45),(19,46),(20,47),(21,48),(22,41),(23,42),(24,43),(25,49),(26,50),(27,51),(28,52),(29,53),(30,54),(31,55),(32,56),(33,59),(34,60),(35,61),(36,62),(37,63),(38,64),(39,57),(40,58)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,21,31,63,5,17,27,59),(2,47,32,36,6,43,28,40),(3,19,25,61,7,23,29,57),(4,45,26,34,8,41,30,38),(9,20,56,62,13,24,52,58),(10,46,49,35,14,42,53,39),(11,18,50,60,15,22,54,64),(12,44,51,33,16,48,55,37)], [(2,9),(4,11),(6,13),(8,15),(17,37),(18,64),(19,39),(20,58),(21,33),(22,60),(23,35),(24,62),(25,29),(26,54),(27,31),(28,56),(30,50),(32,52),(34,41),(36,43),(38,45),(40,47),(42,61),(44,63),(46,57),(48,59),(49,53),(51,55)]])
Matrix representation of (C2×C8).55D4 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
5 | 16 | 0 | 0 | 0 | 0 |
9 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 6 | 3 | 6 |
0 | 0 | 14 | 14 | 14 | 14 |
0 | 0 | 14 | 11 | 3 | 6 |
0 | 0 | 3 | 3 | 14 | 14 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 5 | 10 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 10 |
0 | 0 | 0 | 0 | 12 | 7 |
1 | 0 | 0 | 0 | 0 | 0 |
10 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 15 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 15 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[5,9,0,0,0,0,16,12,0,0,0,0,0,0,3,14,14,3,0,0,6,14,11,3,0,0,3,14,3,14,0,0,6,14,6,14],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,5,0,0,0,0,7,10,0,0,0,0,0,0,0,12,0,0,0,0,10,7],[1,10,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,15,1,0,0,0,0,0,0,16,0,0,0,0,0,15,1] >;
(C2×C8).55D4 in GAP, Magma, Sage, TeX
(C_2\times C_8)._{55}D_4
% in TeX
G:=Group("(C2xC8).55D4");
// GroupNames label
G:=SmallGroup(128,810);
// by ID
G=gap.SmallGroup(128,810);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,112,141,422,387,58,718,172,2028,1027,124]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^8=d^2=1,c^4=b^4,d*b*d=a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=a*b^-1,d*c*d=a*b^4*c^3>;
// generators/relations
Export