p-group, metabelian, nilpotent (class 3), monomial
Aliases: Q8⋊6SD16, C42.187C23, Q8⋊C8⋊21C2, C4⋊C4.23D4, Q8⋊3Q8⋊1C2, (C2×Q8).43D4, C4⋊Q8.9C22, C4.81(C4○D8), (C4×C8).15C22, C4⋊SD16.5C2, C4.25(C2×SD16), C4.4D8.1C2, C4.10D8⋊18C2, C4⋊C8.160C22, C4.58(C8⋊C22), (C4×Q8).21C22, C2.17(D4⋊D4), C2.12(Q8⋊D4), C4⋊1D4.11C22, C4.57(C8.C22), C2.13(D4.8D4), C22.153C22≀C2, (C2×C4).944(C2×D4), SmallGroup(128,358)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for Q8⋊6SD16
G = < a,b,c,d | a4=c8=d2=1, b2=a2, bab-1=cac-1=dad=a-1, cbc-1=ab, dbd=a-1b, dcd=c3 >
Subgroups: 248 in 105 conjugacy classes, 36 normal (32 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, C42, C42, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, SD16, C2×D4, C2×Q8, C2×Q8, C4×C8, D4⋊C4, C4⋊C8, C4×Q8, C4×Q8, C42.C2, C4⋊1D4, C4⋊Q8, C4⋊Q8, C2×SD16, Q8⋊C8, C4.10D8, C4⋊SD16, C4.4D8, Q8⋊3Q8, Q8⋊6SD16
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C22≀C2, C2×SD16, C4○D8, C8⋊C22, C8.C22, Q8⋊D4, D4⋊D4, D4.8D4, Q8⋊6SD16
Character table of Q8⋊6SD16
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 0 | -2 | 2 | 2 | -2 | -2 | 0 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 0 | -2 | 2 | 2 | -2 | -2 | 0 | 2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 2 | -2 | -2 | 2 | -2 | -2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | -2 | 2 | 0 | 2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | 0 | 0 | √-2 | complex lifted from SD16 |
ρ16 | 2 | -2 | -2 | 2 | 0 | 2 | 0 | 0 | -2 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | √-2 | 0 | 0 | -√-2 | complex lifted from SD16 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | 0 | √-2 | -√-2 | 0 | complex lifted from C4○D8 |
ρ18 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | 0 | -√-2 | √-2 | 0 | complex lifted from C4○D8 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | 0 | √-2 | -√-2 | 0 | complex lifted from C4○D8 |
ρ20 | 2 | -2 | -2 | 2 | 0 | 2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | √-2 | 0 | 0 | -√-2 | complex lifted from SD16 |
ρ21 | 2 | -2 | -2 | 2 | 0 | 2 | 0 | 0 | -2 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | -√-2 | 0 | 0 | √-2 | complex lifted from SD16 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | 0 | -√-2 | √-2 | 0 | complex lifted from C4○D8 |
ρ23 | 4 | 4 | -4 | -4 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ24 | 4 | -4 | -4 | 4 | 0 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ25 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | complex lifted from D4.8D4 |
ρ26 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | complex lifted from D4.8D4 |
(1 15 33 19)(2 20 34 16)(3 9 35 21)(4 22 36 10)(5 11 37 23)(6 24 38 12)(7 13 39 17)(8 18 40 14)(25 64 55 46)(26 47 56 57)(27 58 49 48)(28 41 50 59)(29 60 51 42)(30 43 52 61)(31 62 53 44)(32 45 54 63)
(1 48 33 58)(2 50 34 28)(3 42 35 60)(4 52 36 30)(5 44 37 62)(6 54 38 32)(7 46 39 64)(8 56 40 26)(9 51 21 29)(10 61 22 43)(11 53 23 31)(12 63 24 45)(13 55 17 25)(14 57 18 47)(15 49 19 27)(16 59 20 41)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(2 4)(3 7)(6 8)(9 17)(10 20)(11 23)(12 18)(13 21)(14 24)(15 19)(16 22)(25 42)(26 45)(27 48)(28 43)(29 46)(30 41)(31 44)(32 47)(34 36)(35 39)(38 40)(49 58)(50 61)(51 64)(52 59)(53 62)(54 57)(55 60)(56 63)
G:=sub<Sym(64)| (1,15,33,19)(2,20,34,16)(3,9,35,21)(4,22,36,10)(5,11,37,23)(6,24,38,12)(7,13,39,17)(8,18,40,14)(25,64,55,46)(26,47,56,57)(27,58,49,48)(28,41,50,59)(29,60,51,42)(30,43,52,61)(31,62,53,44)(32,45,54,63), (1,48,33,58)(2,50,34,28)(3,42,35,60)(4,52,36,30)(5,44,37,62)(6,54,38,32)(7,46,39,64)(8,56,40,26)(9,51,21,29)(10,61,22,43)(11,53,23,31)(12,63,24,45)(13,55,17,25)(14,57,18,47)(15,49,19,27)(16,59,20,41), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,4)(3,7)(6,8)(9,17)(10,20)(11,23)(12,18)(13,21)(14,24)(15,19)(16,22)(25,42)(26,45)(27,48)(28,43)(29,46)(30,41)(31,44)(32,47)(34,36)(35,39)(38,40)(49,58)(50,61)(51,64)(52,59)(53,62)(54,57)(55,60)(56,63)>;
G:=Group( (1,15,33,19)(2,20,34,16)(3,9,35,21)(4,22,36,10)(5,11,37,23)(6,24,38,12)(7,13,39,17)(8,18,40,14)(25,64,55,46)(26,47,56,57)(27,58,49,48)(28,41,50,59)(29,60,51,42)(30,43,52,61)(31,62,53,44)(32,45,54,63), (1,48,33,58)(2,50,34,28)(3,42,35,60)(4,52,36,30)(5,44,37,62)(6,54,38,32)(7,46,39,64)(8,56,40,26)(9,51,21,29)(10,61,22,43)(11,53,23,31)(12,63,24,45)(13,55,17,25)(14,57,18,47)(15,49,19,27)(16,59,20,41), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,4)(3,7)(6,8)(9,17)(10,20)(11,23)(12,18)(13,21)(14,24)(15,19)(16,22)(25,42)(26,45)(27,48)(28,43)(29,46)(30,41)(31,44)(32,47)(34,36)(35,39)(38,40)(49,58)(50,61)(51,64)(52,59)(53,62)(54,57)(55,60)(56,63) );
G=PermutationGroup([[(1,15,33,19),(2,20,34,16),(3,9,35,21),(4,22,36,10),(5,11,37,23),(6,24,38,12),(7,13,39,17),(8,18,40,14),(25,64,55,46),(26,47,56,57),(27,58,49,48),(28,41,50,59),(29,60,51,42),(30,43,52,61),(31,62,53,44),(32,45,54,63)], [(1,48,33,58),(2,50,34,28),(3,42,35,60),(4,52,36,30),(5,44,37,62),(6,54,38,32),(7,46,39,64),(8,56,40,26),(9,51,21,29),(10,61,22,43),(11,53,23,31),(12,63,24,45),(13,55,17,25),(14,57,18,47),(15,49,19,27),(16,59,20,41)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(2,4),(3,7),(6,8),(9,17),(10,20),(11,23),(12,18),(13,21),(14,24),(15,19),(16,22),(25,42),(26,45),(27,48),(28,43),(29,46),(30,41),(31,44),(32,47),(34,36),(35,39),(38,40),(49,58),(50,61),(51,64),(52,59),(53,62),(54,57),(55,60),(56,63)]])
Matrix representation of Q8⋊6SD16 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 15 |
0 | 0 | 1 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 10 |
0 | 0 | 5 | 0 |
5 | 5 | 0 | 0 |
12 | 5 | 0 | 0 |
0 | 0 | 13 | 9 |
0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 16 | 16 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,16,1,0,0,15,1],[1,0,0,0,0,1,0,0,0,0,0,5,0,0,10,0],[5,12,0,0,5,5,0,0,0,0,13,0,0,0,9,4],[1,0,0,0,0,16,0,0,0,0,1,16,0,0,0,16] >;
Q8⋊6SD16 in GAP, Magma, Sage, TeX
Q_8\rtimes_6{\rm SD}_{16}
% in TeX
G:=Group("Q8:6SD16");
// GroupNames label
G:=SmallGroup(128,358);
// by ID
G=gap.SmallGroup(128,358);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,141,456,422,184,1123,570,521,136,2804,1411,718,172]);
// Polycyclic
G:=Group<a,b,c,d|a^4=c^8=d^2=1,b^2=a^2,b*a*b^-1=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a*b,d*b*d=a^-1*b,d*c*d=c^3>;
// generators/relations
Export