Copied to
clipboard

G = Q86SD16order 128 = 27

2nd semidirect product of Q8 and SD16 acting via SD16/Q8=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: Q86SD16, C42.187C23, Q8⋊C821C2, C4⋊C4.23D4, Q83Q81C2, (C2×Q8).43D4, C4⋊Q8.9C22, C4.81(C4○D8), (C4×C8).15C22, C4⋊SD16.5C2, C4.25(C2×SD16), C4.4D8.1C2, C4.10D818C2, C4⋊C8.160C22, C4.58(C8⋊C22), (C4×Q8).21C22, C2.17(D4⋊D4), C2.12(Q8⋊D4), C41D4.11C22, C4.57(C8.C22), C2.13(D4.8D4), C22.153C22≀C2, (C2×C4).944(C2×D4), SmallGroup(128,358)

Series: Derived Chief Lower central Upper central Jennings

C1C42 — Q86SD16
C1C2C22C2×C4C42C4×Q8Q83Q8 — Q86SD16
C1C22C42 — Q86SD16
C1C22C42 — Q86SD16
C1C22C22C42 — Q86SD16

Generators and relations for Q86SD16
 G = < a,b,c,d | a4=c8=d2=1, b2=a2, bab-1=cac-1=dad=a-1, cbc-1=ab, dbd=a-1b, dcd=c3 >

Subgroups: 248 in 105 conjugacy classes, 36 normal (32 characteristic)
C1, C2 [×3], C2, C4 [×4], C4 [×8], C22, C22 [×3], C8 [×3], C2×C4 [×3], C2×C4 [×6], D4 [×6], Q8 [×2], Q8 [×5], C23, C42, C42 [×4], C4⋊C4 [×2], C4⋊C4 [×2], C4⋊C4 [×9], C2×C8 [×3], SD16 [×4], C2×D4 [×3], C2×Q8 [×2], C2×Q8, C4×C8, D4⋊C4 [×4], C4⋊C8 [×2], C4×Q8 [×2], C4×Q8 [×2], C42.C2 [×3], C41D4, C4⋊Q8, C4⋊Q8, C2×SD16 [×2], Q8⋊C8 [×2], C4.10D8, C4⋊SD16 [×2], C4.4D8, Q83Q8, Q86SD16
Quotients: C1, C2 [×7], C22 [×7], D4 [×6], C23, SD16 [×2], C2×D4 [×3], C22≀C2, C2×SD16, C4○D8, C8⋊C22, C8.C22, Q8⋊D4, D4⋊D4, D4.8D4, Q86SD16

Character table of Q86SD16

 class 12A2B2C2D4A4B4C4D4E4F4G4H4I4J4K4L4M8A8B8C8D8E8F8G8H
 size 111116222244444888844448888
ρ111111111111111111111111111    trivial
ρ21111-11111111111111-1-1-1-1-1-1-1-1    linear of order 2
ρ31111111111-1-1-1-1-11-111111-1-1-1-1    linear of order 2
ρ41111-111111-1-1-1-1-11-11-1-1-1-11111    linear of order 2
ρ511111111111-1-11-1-11-1-1-1-1-1-111-1    linear of order 2
ρ61111-1111111-1-11-1-11-111111-1-11    linear of order 2
ρ71111111111-111-11-1-1-1-1-1-1-11-1-11    linear of order 2
ρ81111-111111-111-11-1-1-11111-111-1    linear of order 2
ρ9222202-2-22-2200200-2000000000    orthogonal lifted from D4
ρ1022220-2-2-2-220000020-200000000    orthogonal lifted from D4
ρ1122220-2-2-2-2200000-20200000000    orthogonal lifted from D4
ρ1222220-222-2-20-2-20200000000000    orthogonal lifted from D4
ρ1322220-222-2-20220-200000000000    orthogonal lifted from D4
ρ14222202-2-22-2-200-2002000000000    orthogonal lifted from D4
ρ152-2-220200-20200-20000--2-2-2--2--200-2    complex lifted from SD16
ρ162-2-220200-20-20020000--2-2-2--2-200--2    complex lifted from SD16
ρ1722-2-2002-2000-2i2i0000022-2-20-2--20    complex lifted from C4○D8
ρ1822-2-2002-2000-2i2i00000-2-2220--2-20    complex lifted from C4○D8
ρ1922-2-2002-20002i-2i00000-2-2220-2--20    complex lifted from C4○D8
ρ202-2-220200-20200-20000-2--2--2-2-200--2    complex lifted from SD16
ρ212-2-220200-20-20020000-2--2--2-2--200-2    complex lifted from SD16
ρ2222-2-2002-20002i-2i0000022-2-20--2-20    complex lifted from C4○D8
ρ2344-4-400-44000000000000000000    orthogonal lifted from C8⋊C22
ρ244-4-440-400400000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ254-44-400000000000000-2i2i-2i2i0000    complex lifted from D4.8D4
ρ264-44-4000000000000002i-2i2i-2i0000    complex lifted from D4.8D4

Smallest permutation representation of Q86SD16
On 64 points
Generators in S64
(1 15 33 19)(2 20 34 16)(3 9 35 21)(4 22 36 10)(5 11 37 23)(6 24 38 12)(7 13 39 17)(8 18 40 14)(25 64 55 48)(26 41 56 57)(27 58 49 42)(28 43 50 59)(29 60 51 44)(30 45 52 61)(31 62 53 46)(32 47 54 63)
(1 42 33 58)(2 50 34 28)(3 44 35 60)(4 52 36 30)(5 46 37 62)(6 54 38 32)(7 48 39 64)(8 56 40 26)(9 51 21 29)(10 61 22 45)(11 53 23 31)(12 63 24 47)(13 55 17 25)(14 57 18 41)(15 49 19 27)(16 59 20 43)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(2 4)(3 7)(6 8)(9 17)(10 20)(11 23)(12 18)(13 21)(14 24)(15 19)(16 22)(25 44)(26 47)(27 42)(28 45)(29 48)(30 43)(31 46)(32 41)(34 36)(35 39)(38 40)(49 58)(50 61)(51 64)(52 59)(53 62)(54 57)(55 60)(56 63)

G:=sub<Sym(64)| (1,15,33,19)(2,20,34,16)(3,9,35,21)(4,22,36,10)(5,11,37,23)(6,24,38,12)(7,13,39,17)(8,18,40,14)(25,64,55,48)(26,41,56,57)(27,58,49,42)(28,43,50,59)(29,60,51,44)(30,45,52,61)(31,62,53,46)(32,47,54,63), (1,42,33,58)(2,50,34,28)(3,44,35,60)(4,52,36,30)(5,46,37,62)(6,54,38,32)(7,48,39,64)(8,56,40,26)(9,51,21,29)(10,61,22,45)(11,53,23,31)(12,63,24,47)(13,55,17,25)(14,57,18,41)(15,49,19,27)(16,59,20,43), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,4)(3,7)(6,8)(9,17)(10,20)(11,23)(12,18)(13,21)(14,24)(15,19)(16,22)(25,44)(26,47)(27,42)(28,45)(29,48)(30,43)(31,46)(32,41)(34,36)(35,39)(38,40)(49,58)(50,61)(51,64)(52,59)(53,62)(54,57)(55,60)(56,63)>;

G:=Group( (1,15,33,19)(2,20,34,16)(3,9,35,21)(4,22,36,10)(5,11,37,23)(6,24,38,12)(7,13,39,17)(8,18,40,14)(25,64,55,48)(26,41,56,57)(27,58,49,42)(28,43,50,59)(29,60,51,44)(30,45,52,61)(31,62,53,46)(32,47,54,63), (1,42,33,58)(2,50,34,28)(3,44,35,60)(4,52,36,30)(5,46,37,62)(6,54,38,32)(7,48,39,64)(8,56,40,26)(9,51,21,29)(10,61,22,45)(11,53,23,31)(12,63,24,47)(13,55,17,25)(14,57,18,41)(15,49,19,27)(16,59,20,43), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,4)(3,7)(6,8)(9,17)(10,20)(11,23)(12,18)(13,21)(14,24)(15,19)(16,22)(25,44)(26,47)(27,42)(28,45)(29,48)(30,43)(31,46)(32,41)(34,36)(35,39)(38,40)(49,58)(50,61)(51,64)(52,59)(53,62)(54,57)(55,60)(56,63) );

G=PermutationGroup([(1,15,33,19),(2,20,34,16),(3,9,35,21),(4,22,36,10),(5,11,37,23),(6,24,38,12),(7,13,39,17),(8,18,40,14),(25,64,55,48),(26,41,56,57),(27,58,49,42),(28,43,50,59),(29,60,51,44),(30,45,52,61),(31,62,53,46),(32,47,54,63)], [(1,42,33,58),(2,50,34,28),(3,44,35,60),(4,52,36,30),(5,46,37,62),(6,54,38,32),(7,48,39,64),(8,56,40,26),(9,51,21,29),(10,61,22,45),(11,53,23,31),(12,63,24,47),(13,55,17,25),(14,57,18,41),(15,49,19,27),(16,59,20,43)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(2,4),(3,7),(6,8),(9,17),(10,20),(11,23),(12,18),(13,21),(14,24),(15,19),(16,22),(25,44),(26,47),(27,42),(28,45),(29,48),(30,43),(31,46),(32,41),(34,36),(35,39),(38,40),(49,58),(50,61),(51,64),(52,59),(53,62),(54,57),(55,60),(56,63)])

Matrix representation of Q86SD16 in GL4(𝔽17) generated by

1000
0100
001615
0011
,
1000
0100
00010
0050
,
5500
12500
00139
0004
,
1000
01600
0010
001616
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,16,1,0,0,15,1],[1,0,0,0,0,1,0,0,0,0,0,5,0,0,10,0],[5,12,0,0,5,5,0,0,0,0,13,0,0,0,9,4],[1,0,0,0,0,16,0,0,0,0,1,16,0,0,0,16] >;

Q86SD16 in GAP, Magma, Sage, TeX

Q_8\rtimes_6{\rm SD}_{16}
% in TeX

G:=Group("Q8:6SD16");
// GroupNames label

G:=SmallGroup(128,358);
// by ID

G=gap.SmallGroup(128,358);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,141,456,422,184,1123,570,521,136,2804,1411,718,172]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^8=d^2=1,b^2=a^2,b*a*b^-1=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a*b,d*b*d=a^-1*b,d*c*d=c^3>;
// generators/relations

Export

Character table of Q86SD16 in TeX

׿
×
𝔽