Copied to
clipboard

G = C2xC8:9D4order 128 = 27

Direct product of C2 and C8:9D4

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C2xC8:9D4, C23:5M4(2), C42.263C23, C8:18(C2xD4), (C2xC8):40D4, C4o(C8:9D4), C4:C8:85C22, (C23xC8):14C2, (C4xD4).26C4, C4.183(C4xD4), C8:C4:57C22, C22:C8:74C22, C42.208(C2xC4), (C2xC4).646C24, (C2xC8).401C23, C24.100(C2xC4), (C22xC8):70C22, (C22xD4).38C4, C22.113(C4xD4), C4.192(C22xD4), C22:1(C2xM4(2)), (C4xD4).284C22, C22.41(C8oD4), (C22xM4(2)):23C2, (C2xM4(2)):74C22, (C23xC4).524C22, (C2xC42).758C22, C23.103(C22xC4), C22.173(C23xC4), C2.10(C22xM4(2)), (C22xC4).1275C23, (C2xC4:C8):47C2, C2.44(C2xC4xD4), (C2xC4xD4).70C2, (C2xC4:C4).70C4, (C2xC4)o(C8:9D4), (C2xC8:C4):33C2, C2.14(C2xC8oD4), C4:C4.221(C2xC4), (C2xC22:C8):42C2, C4.297(C2xC4oD4), (C2xD4).230(C2xC4), (C2xC4).1571(C2xD4), C22:C4.71(C2xC4), (C2xC22:C4).47C4, (C2xC4).956(C4oD4), (C22xC4).384(C2xC4), (C2xC4).261(C22xC4), SmallGroup(128,1659)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C2xC8:9D4
C1C2C4C2xC4C22xC4C22xC8C23xC8 — C2xC8:9D4
C1C22 — C2xC8:9D4
C1C22xC4 — C2xC8:9D4
C1C2C2C2xC4 — C2xC8:9D4

Generators and relations for C2xC8:9D4
 G = < a,b,c,d | a2=b8=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b5, dcd=c-1 >

Subgroups: 420 in 282 conjugacy classes, 156 normal (36 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2xC4, C2xC4, C2xC4, D4, C23, C23, C23, C42, C22:C4, C4:C4, C2xC8, C2xC8, M4(2), C22xC4, C22xC4, C22xC4, C2xD4, C2xD4, C24, C8:C4, C22:C8, C4:C8, C2xC42, C2xC22:C4, C2xC4:C4, C4xD4, C22xC8, C22xC8, C22xC8, C2xM4(2), C2xM4(2), C23xC4, C22xD4, C2xC8:C4, C2xC22:C8, C2xC4:C8, C8:9D4, C2xC4xD4, C23xC8, C22xM4(2), C2xC8:9D4
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, M4(2), C22xC4, C2xD4, C4oD4, C24, C4xD4, C2xM4(2), C8oD4, C23xC4, C22xD4, C2xC4oD4, C8:9D4, C2xC4xD4, C22xM4(2), C2xC8oD4, C2xC8:9D4

Smallest permutation representation of C2xC8:9D4
On 64 points
Generators in S64
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 17)(8 18)(9 44)(10 45)(11 46)(12 47)(13 48)(14 41)(15 42)(16 43)(25 34)(26 35)(27 36)(28 37)(29 38)(30 39)(31 40)(32 33)(49 64)(50 57)(51 58)(52 59)(53 60)(54 61)(55 62)(56 63)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 40 47 63)(2 37 48 60)(3 34 41 57)(4 39 42 62)(5 36 43 59)(6 33 44 64)(7 38 45 61)(8 35 46 58)(9 49 24 32)(10 54 17 29)(11 51 18 26)(12 56 19 31)(13 53 20 28)(14 50 21 25)(15 55 22 30)(16 52 23 27)
(2 6)(4 8)(9 13)(11 15)(18 22)(20 24)(25 50)(26 55)(27 52)(28 49)(29 54)(30 51)(31 56)(32 53)(33 60)(34 57)(35 62)(36 59)(37 64)(38 61)(39 58)(40 63)(42 46)(44 48)

G:=sub<Sym(64)| (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,44)(10,45)(11,46)(12,47)(13,48)(14,41)(15,42)(16,43)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(31,40)(32,33)(49,64)(50,57)(51,58)(52,59)(53,60)(54,61)(55,62)(56,63), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,40,47,63)(2,37,48,60)(3,34,41,57)(4,39,42,62)(5,36,43,59)(6,33,44,64)(7,38,45,61)(8,35,46,58)(9,49,24,32)(10,54,17,29)(11,51,18,26)(12,56,19,31)(13,53,20,28)(14,50,21,25)(15,55,22,30)(16,52,23,27), (2,6)(4,8)(9,13)(11,15)(18,22)(20,24)(25,50)(26,55)(27,52)(28,49)(29,54)(30,51)(31,56)(32,53)(33,60)(34,57)(35,62)(36,59)(37,64)(38,61)(39,58)(40,63)(42,46)(44,48)>;

G:=Group( (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,44)(10,45)(11,46)(12,47)(13,48)(14,41)(15,42)(16,43)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(31,40)(32,33)(49,64)(50,57)(51,58)(52,59)(53,60)(54,61)(55,62)(56,63), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,40,47,63)(2,37,48,60)(3,34,41,57)(4,39,42,62)(5,36,43,59)(6,33,44,64)(7,38,45,61)(8,35,46,58)(9,49,24,32)(10,54,17,29)(11,51,18,26)(12,56,19,31)(13,53,20,28)(14,50,21,25)(15,55,22,30)(16,52,23,27), (2,6)(4,8)(9,13)(11,15)(18,22)(20,24)(25,50)(26,55)(27,52)(28,49)(29,54)(30,51)(31,56)(32,53)(33,60)(34,57)(35,62)(36,59)(37,64)(38,61)(39,58)(40,63)(42,46)(44,48) );

G=PermutationGroup([[(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,17),(8,18),(9,44),(10,45),(11,46),(12,47),(13,48),(14,41),(15,42),(16,43),(25,34),(26,35),(27,36),(28,37),(29,38),(30,39),(31,40),(32,33),(49,64),(50,57),(51,58),(52,59),(53,60),(54,61),(55,62),(56,63)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,40,47,63),(2,37,48,60),(3,34,41,57),(4,39,42,62),(5,36,43,59),(6,33,44,64),(7,38,45,61),(8,35,46,58),(9,49,24,32),(10,54,17,29),(11,51,18,26),(12,56,19,31),(13,53,20,28),(14,50,21,25),(15,55,22,30),(16,52,23,27)], [(2,6),(4,8),(9,13),(11,15),(18,22),(20,24),(25,50),(26,55),(27,52),(28,49),(29,54),(30,51),(31,56),(32,53),(33,60),(34,57),(35,62),(36,59),(37,64),(38,61),(39,58),(40,63),(42,46),(44,48)]])

56 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M4A···4H4I4J4K4L4M···4R8A···8P8Q···8X
order12···22222224···444444···48···88···8
size11···12222441···122224···42···24···4

56 irreducible representations

dim1111111111112222
type+++++++++
imageC1C2C2C2C2C2C2C2C4C4C4C4D4C4oD4M4(2)C8oD4
kernelC2xC8:9D4C2xC8:C4C2xC22:C8C2xC4:C8C8:9D4C2xC4xD4C23xC8C22xM4(2)C2xC22:C4C2xC4:C4C4xD4C22xD4C2xC8C2xC4C23C22
# reps1121811142824488

Matrix representation of C2xC8:9D4 in GL6(F17)

100000
010000
0016000
0001600
0000160
0000016
,
400000
040000
001000
000100
0000315
00001114
,
010000
1600000
0001600
001000
000010
0000316
,
100000
0160000
001000
0001600
000010
0000316

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,11,0,0,0,0,15,14],[0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,0,1,3,0,0,0,0,0,16],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,3,0,0,0,0,0,16] >;

C2xC8:9D4 in GAP, Magma, Sage, TeX

C_2\times C_8\rtimes_9D_4
% in TeX

G:=Group("C2xC8:9D4");
// GroupNames label

G:=SmallGroup(128,1659);
// by ID

G=gap.SmallGroup(128,1659);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,1430,184,124]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^5,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<