direct product, p-group, metabelian, nilpotent (class 2), monomial
Aliases: C2×C8⋊9D4, C23⋊5M4(2), C42.263C23, C8⋊18(C2×D4), (C2×C8)⋊40D4, C4○(C8⋊9D4), C4⋊C8⋊85C22, (C23×C8)⋊14C2, (C4×D4).26C4, C4.183(C4×D4), C8⋊C4⋊57C22, C22⋊C8⋊74C22, C42.208(C2×C4), (C2×C4).646C24, (C2×C8).401C23, C24.100(C2×C4), (C22×C8)⋊70C22, (C22×D4).38C4, C22.113(C4×D4), C4.192(C22×D4), C22⋊1(C2×M4(2)), (C4×D4).284C22, C22.41(C8○D4), (C22×M4(2))⋊23C2, (C2×M4(2))⋊74C22, (C23×C4).524C22, (C2×C42).758C22, C23.103(C22×C4), C22.173(C23×C4), C2.10(C22×M4(2)), (C22×C4).1275C23, (C2×C4⋊C8)⋊47C2, C2.44(C2×C4×D4), (C2×C4×D4).70C2, (C2×C4⋊C4).70C4, (C2×C4)○(C8⋊9D4), (C2×C8⋊C4)⋊33C2, C2.14(C2×C8○D4), C4⋊C4.221(C2×C4), (C2×C22⋊C8)⋊42C2, C4.297(C2×C4○D4), (C2×D4).230(C2×C4), (C2×C4).1571(C2×D4), C22⋊C4.71(C2×C4), (C2×C22⋊C4).47C4, (C2×C4).956(C4○D4), (C22×C4).384(C2×C4), (C2×C4).261(C22×C4), SmallGroup(128,1659)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C8⋊9D4
G = < a,b,c,d | a2=b8=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b5, dcd=c-1 >
Subgroups: 420 in 282 conjugacy classes, 156 normal (36 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C8⋊C4, C22⋊C8, C4⋊C8, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C4×D4, C22×C8, C22×C8, C22×C8, C2×M4(2), C2×M4(2), C23×C4, C22×D4, C2×C8⋊C4, C2×C22⋊C8, C2×C4⋊C8, C8⋊9D4, C2×C4×D4, C23×C8, C22×M4(2), C2×C8⋊9D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, M4(2), C22×C4, C2×D4, C4○D4, C24, C4×D4, C2×M4(2), C8○D4, C23×C4, C22×D4, C2×C4○D4, C8⋊9D4, C2×C4×D4, C22×M4(2), C2×C8○D4, C2×C8⋊9D4
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 17)(8 18)(9 44)(10 45)(11 46)(12 47)(13 48)(14 41)(15 42)(16 43)(25 34)(26 35)(27 36)(28 37)(29 38)(30 39)(31 40)(32 33)(49 64)(50 57)(51 58)(52 59)(53 60)(54 61)(55 62)(56 63)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 40 47 63)(2 37 48 60)(3 34 41 57)(4 39 42 62)(5 36 43 59)(6 33 44 64)(7 38 45 61)(8 35 46 58)(9 49 24 32)(10 54 17 29)(11 51 18 26)(12 56 19 31)(13 53 20 28)(14 50 21 25)(15 55 22 30)(16 52 23 27)
(2 6)(4 8)(9 13)(11 15)(18 22)(20 24)(25 50)(26 55)(27 52)(28 49)(29 54)(30 51)(31 56)(32 53)(33 60)(34 57)(35 62)(36 59)(37 64)(38 61)(39 58)(40 63)(42 46)(44 48)
G:=sub<Sym(64)| (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,44)(10,45)(11,46)(12,47)(13,48)(14,41)(15,42)(16,43)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(31,40)(32,33)(49,64)(50,57)(51,58)(52,59)(53,60)(54,61)(55,62)(56,63), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,40,47,63)(2,37,48,60)(3,34,41,57)(4,39,42,62)(5,36,43,59)(6,33,44,64)(7,38,45,61)(8,35,46,58)(9,49,24,32)(10,54,17,29)(11,51,18,26)(12,56,19,31)(13,53,20,28)(14,50,21,25)(15,55,22,30)(16,52,23,27), (2,6)(4,8)(9,13)(11,15)(18,22)(20,24)(25,50)(26,55)(27,52)(28,49)(29,54)(30,51)(31,56)(32,53)(33,60)(34,57)(35,62)(36,59)(37,64)(38,61)(39,58)(40,63)(42,46)(44,48)>;
G:=Group( (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,44)(10,45)(11,46)(12,47)(13,48)(14,41)(15,42)(16,43)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(31,40)(32,33)(49,64)(50,57)(51,58)(52,59)(53,60)(54,61)(55,62)(56,63), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,40,47,63)(2,37,48,60)(3,34,41,57)(4,39,42,62)(5,36,43,59)(6,33,44,64)(7,38,45,61)(8,35,46,58)(9,49,24,32)(10,54,17,29)(11,51,18,26)(12,56,19,31)(13,53,20,28)(14,50,21,25)(15,55,22,30)(16,52,23,27), (2,6)(4,8)(9,13)(11,15)(18,22)(20,24)(25,50)(26,55)(27,52)(28,49)(29,54)(30,51)(31,56)(32,53)(33,60)(34,57)(35,62)(36,59)(37,64)(38,61)(39,58)(40,63)(42,46)(44,48) );
G=PermutationGroup([[(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,17),(8,18),(9,44),(10,45),(11,46),(12,47),(13,48),(14,41),(15,42),(16,43),(25,34),(26,35),(27,36),(28,37),(29,38),(30,39),(31,40),(32,33),(49,64),(50,57),(51,58),(52,59),(53,60),(54,61),(55,62),(56,63)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,40,47,63),(2,37,48,60),(3,34,41,57),(4,39,42,62),(5,36,43,59),(6,33,44,64),(7,38,45,61),(8,35,46,58),(9,49,24,32),(10,54,17,29),(11,51,18,26),(12,56,19,31),(13,53,20,28),(14,50,21,25),(15,55,22,30),(16,52,23,27)], [(2,6),(4,8),(9,13),(11,15),(18,22),(20,24),(25,50),(26,55),(27,52),(28,49),(29,54),(30,51),(31,56),(32,53),(33,60),(34,57),(35,62),(36,59),(37,64),(38,61),(39,58),(40,63),(42,46),(44,48)]])
56 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 4A | ··· | 4H | 4I | 4J | 4K | 4L | 4M | ··· | 4R | 8A | ··· | 8P | 8Q | ··· | 8X |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | D4 | C4○D4 | M4(2) | C8○D4 |
kernel | C2×C8⋊9D4 | C2×C8⋊C4 | C2×C22⋊C8 | C2×C4⋊C8 | C8⋊9D4 | C2×C4×D4 | C23×C8 | C22×M4(2) | C2×C22⋊C4 | C2×C4⋊C4 | C4×D4 | C22×D4 | C2×C8 | C2×C4 | C23 | C22 |
# reps | 1 | 1 | 2 | 1 | 8 | 1 | 1 | 1 | 4 | 2 | 8 | 2 | 4 | 4 | 8 | 8 |
Matrix representation of C2×C8⋊9D4 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 15 |
0 | 0 | 0 | 0 | 11 | 14 |
0 | 1 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 3 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 3 | 16 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,11,0,0,0,0,15,14],[0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,0,1,3,0,0,0,0,0,16],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,3,0,0,0,0,0,16] >;
C2×C8⋊9D4 in GAP, Magma, Sage, TeX
C_2\times C_8\rtimes_9D_4
% in TeX
G:=Group("C2xC8:9D4");
// GroupNames label
G:=SmallGroup(128,1659);
// by ID
G=gap.SmallGroup(128,1659);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,1430,184,124]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^8=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^5,d*c*d=c^-1>;
// generators/relations