Copied to
clipboard

G = C4oD4:D4order 128 = 27

1st semidirect product of C4oD4 and D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C4oD4:1D4, (C2xD4):20D4, D4.43(C2xD4), C2.6(D4oD8), (C22xD8):7C2, Q8.43(C2xD4), D4:D4:15C2, C22:D8:13C2, C4.39C22wrC2, (C2xD8):38C22, C4:C4.10C23, C4:D4:1C22, C22:C8:7C22, (C2xQ8).229D4, (C22xC8):8C22, C4.45(C22xD4), (C2xC4).227C24, (C2xC8).129C23, (C2xSD16):6C22, (C2xD4).29C23, C23.231(C2xD4), D4:C4:12C22, C22.29C24:3C2, C42:C2:7C22, Q8:C4:66C22, C22.19C22wrC2, C23.37D4:4C2, C23.24D4:6C2, (C22xD4):18C22, (C2xM4(2)):4C22, (C2x2+ 1+4):1C2, (C2xQ8).354C23, (C22xC4).275C23, C22.487(C22xD4), (C2xC8:C22):8C2, (C2xC4).454(C2xD4), (C2xC4oD4):3C22, (C22xC8):C2:3C2, C2.45(C2xC22wrC2), SmallGroup(128,1740)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC4 — C4oD4:D4
C1C2C22C2xC4C22xC4C2xC4oD4C2x2+ 1+4 — C4oD4:D4
C1C2C2xC4 — C4oD4:D4
C1C22C2xC4oD4 — C4oD4:D4
C1C2C2C2xC4 — C4oD4:D4

Generators and relations for C4oD4:D4
 G = < a,b,c,d,e | a4=c2=d4=e2=1, b2=a2, ab=ba, ac=ca, ad=da, eae=a-1, cbc=dbd-1=ebe=a2b, dcd-1=ece=bc, ede=d-1 >

Subgroups: 908 in 392 conjugacy classes, 108 normal (28 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, C23, C42, C22:C4, C4:C4, C2xC8, C2xC8, M4(2), D8, SD16, C22xC4, C22xC4, C22xC4, C2xD4, C2xD4, C2xD4, C2xQ8, C4oD4, C4oD4, C24, C22:C8, D4:C4, Q8:C4, C42:C2, C22wrC2, C4:D4, C4.4D4, C4:1D4, C22xC8, C2xM4(2), C2xD8, C2xD8, C2xSD16, C8:C22, C22xD4, C22xD4, C22xD4, C2xC4oD4, C2xC4oD4, C2xC4oD4, 2+ 1+4, (C22xC8):C2, C23.24D4, C23.37D4, C22:D8, D4:D4, C22.29C24, C22xD8, C2xC8:C22, C2x2+ 1+4, C4oD4:D4
Quotients: C1, C2, C22, D4, C23, C2xD4, C24, C22wrC2, C22xD4, C2xC22wrC2, D4oD8, C4oD4:D4

Smallest permutation representation of C4oD4:D4
On 32 points
Generators in S32
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 9 3 11)(2 10 4 12)(5 21 7 23)(6 22 8 24)(13 17 15 19)(14 18 16 20)(25 32 27 30)(26 29 28 31)
(1 24)(2 21)(3 22)(4 23)(5 10)(6 11)(7 12)(8 9)(13 30)(14 31)(15 32)(16 29)(17 27)(18 28)(19 25)(20 26)
(1 15 24 25)(2 16 21 26)(3 13 22 27)(4 14 23 28)(5 29 12 20)(6 30 9 17)(7 31 10 18)(8 32 11 19)
(1 26)(2 25)(3 28)(4 27)(5 19)(6 18)(7 17)(8 20)(9 31)(10 30)(11 29)(12 32)(13 23)(14 22)(15 21)(16 24)

G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,9,3,11)(2,10,4,12)(5,21,7,23)(6,22,8,24)(13,17,15,19)(14,18,16,20)(25,32,27,30)(26,29,28,31), (1,24)(2,21)(3,22)(4,23)(5,10)(6,11)(7,12)(8,9)(13,30)(14,31)(15,32)(16,29)(17,27)(18,28)(19,25)(20,26), (1,15,24,25)(2,16,21,26)(3,13,22,27)(4,14,23,28)(5,29,12,20)(6,30,9,17)(7,31,10,18)(8,32,11,19), (1,26)(2,25)(3,28)(4,27)(5,19)(6,18)(7,17)(8,20)(9,31)(10,30)(11,29)(12,32)(13,23)(14,22)(15,21)(16,24)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,9,3,11)(2,10,4,12)(5,21,7,23)(6,22,8,24)(13,17,15,19)(14,18,16,20)(25,32,27,30)(26,29,28,31), (1,24)(2,21)(3,22)(4,23)(5,10)(6,11)(7,12)(8,9)(13,30)(14,31)(15,32)(16,29)(17,27)(18,28)(19,25)(20,26), (1,15,24,25)(2,16,21,26)(3,13,22,27)(4,14,23,28)(5,29,12,20)(6,30,9,17)(7,31,10,18)(8,32,11,19), (1,26)(2,25)(3,28)(4,27)(5,19)(6,18)(7,17)(8,20)(9,31)(10,30)(11,29)(12,32)(13,23)(14,22)(15,21)(16,24) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,9,3,11),(2,10,4,12),(5,21,7,23),(6,22,8,24),(13,17,15,19),(14,18,16,20),(25,32,27,30),(26,29,28,31)], [(1,24),(2,21),(3,22),(4,23),(5,10),(6,11),(7,12),(8,9),(13,30),(14,31),(15,32),(16,29),(17,27),(18,28),(19,25),(20,26)], [(1,15,24,25),(2,16,21,26),(3,13,22,27),(4,14,23,28),(5,29,12,20),(6,30,9,17),(7,31,10,18),(8,32,11,19)], [(1,26),(2,25),(3,28),(4,27),(5,19),(6,18),(7,17),(8,20),(9,31),(10,30),(11,29),(12,32),(13,23),(14,22),(15,21),(16,24)]])

32 conjugacy classes

class 1 2A2B2C2D2E2F···2M2N2O4A4B4C4D4E4F4G4H4I4J8A8B8C8D8E8F
order1222222···2224444444444888888
size1111224···4882222444488444488

32 irreducible representations

dim11111111112224
type++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2D4D4D4D4oD8
kernelC4oD4:D4(C22xC8):C2C23.24D4C23.37D4C22:D8D4:D4C22.29C24C22xD8C2xC8:C22C2x2+ 1+4C2xD4C2xQ8C4oD4C2
# reps11114411117144

Matrix representation of C4oD4:D4 in GL6(F17)

100000
010000
000001
0000160
000100
0016000
,
100000
010000
0001600
001000
0000016
000010
,
100000
010000
000100
001000
0000016
0000160
,
0150000
900000
003300
0031400
00001414
0000143
,
020000
900000
0000143
000033
0014300
003300

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,16,0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,16,0],[0,9,0,0,0,0,15,0,0,0,0,0,0,0,3,3,0,0,0,0,3,14,0,0,0,0,0,0,14,14,0,0,0,0,14,3],[0,9,0,0,0,0,2,0,0,0,0,0,0,0,0,0,14,3,0,0,0,0,3,3,0,0,14,3,0,0,0,0,3,3,0,0] >;

C4oD4:D4 in GAP, Magma, Sage, TeX

C_4\circ D_4\rtimes D_4
% in TeX

G:=Group("C4oD4:D4");
// GroupNames label

G:=SmallGroup(128,1740);
// by ID

G=gap.SmallGroup(128,1740);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,758,521,2804,1411,172]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=c^2=d^4=e^2=1,b^2=a^2,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^-1,c*b*c=d*b*d^-1=e*b*e=a^2*b,d*c*d^-1=e*c*e=b*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<