p-group, metabelian, nilpotent (class 3), monomial
Aliases: C4oD4:1D4, (C2xD4):20D4, D4.43(C2xD4), C2.6(D4oD8), (C22xD8):7C2, Q8.43(C2xD4), D4:D4:15C2, C22:D8:13C2, C4.39C22wrC2, (C2xD8):38C22, C4:C4.10C23, C4:D4:1C22, C22:C8:7C22, (C2xQ8).229D4, (C22xC8):8C22, C4.45(C22xD4), (C2xC4).227C24, (C2xC8).129C23, (C2xSD16):6C22, (C2xD4).29C23, C23.231(C2xD4), D4:C4:12C22, C22.29C24:3C2, C42:C2:7C22, Q8:C4:66C22, C22.19C22wrC2, C23.37D4:4C2, C23.24D4:6C2, (C22xD4):18C22, (C2xM4(2)):4C22, (C2x2+ 1+4):1C2, (C2xQ8).354C23, (C22xC4).275C23, C22.487(C22xD4), (C2xC8:C22):8C2, (C2xC4).454(C2xD4), (C2xC4oD4):3C22, (C22xC8):C2:3C2, C2.45(C2xC22wrC2), SmallGroup(128,1740)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C4oD4:D4
G = < a,b,c,d,e | a4=c2=d4=e2=1, b2=a2, ab=ba, ac=ca, ad=da, eae=a-1, cbc=dbd-1=ebe=a2b, dcd-1=ece=bc, ede=d-1 >
Subgroups: 908 in 392 conjugacy classes, 108 normal (28 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, C23, C42, C22:C4, C4:C4, C2xC8, C2xC8, M4(2), D8, SD16, C22xC4, C22xC4, C22xC4, C2xD4, C2xD4, C2xD4, C2xQ8, C4oD4, C4oD4, C24, C22:C8, D4:C4, Q8:C4, C42:C2, C22wrC2, C4:D4, C4.4D4, C4:1D4, C22xC8, C2xM4(2), C2xD8, C2xD8, C2xSD16, C8:C22, C22xD4, C22xD4, C22xD4, C2xC4oD4, C2xC4oD4, C2xC4oD4, 2+ 1+4, (C22xC8):C2, C23.24D4, C23.37D4, C22:D8, D4:D4, C22.29C24, C22xD8, C2xC8:C22, C2x2+ 1+4, C4oD4:D4
Quotients: C1, C2, C22, D4, C23, C2xD4, C24, C22wrC2, C22xD4, C2xC22wrC2, D4oD8, C4oD4:D4
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 9 3 11)(2 10 4 12)(5 21 7 23)(6 22 8 24)(13 17 15 19)(14 18 16 20)(25 32 27 30)(26 29 28 31)
(1 24)(2 21)(3 22)(4 23)(5 10)(6 11)(7 12)(8 9)(13 30)(14 31)(15 32)(16 29)(17 27)(18 28)(19 25)(20 26)
(1 15 24 25)(2 16 21 26)(3 13 22 27)(4 14 23 28)(5 29 12 20)(6 30 9 17)(7 31 10 18)(8 32 11 19)
(1 26)(2 25)(3 28)(4 27)(5 19)(6 18)(7 17)(8 20)(9 31)(10 30)(11 29)(12 32)(13 23)(14 22)(15 21)(16 24)
G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,9,3,11)(2,10,4,12)(5,21,7,23)(6,22,8,24)(13,17,15,19)(14,18,16,20)(25,32,27,30)(26,29,28,31), (1,24)(2,21)(3,22)(4,23)(5,10)(6,11)(7,12)(8,9)(13,30)(14,31)(15,32)(16,29)(17,27)(18,28)(19,25)(20,26), (1,15,24,25)(2,16,21,26)(3,13,22,27)(4,14,23,28)(5,29,12,20)(6,30,9,17)(7,31,10,18)(8,32,11,19), (1,26)(2,25)(3,28)(4,27)(5,19)(6,18)(7,17)(8,20)(9,31)(10,30)(11,29)(12,32)(13,23)(14,22)(15,21)(16,24)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,9,3,11)(2,10,4,12)(5,21,7,23)(6,22,8,24)(13,17,15,19)(14,18,16,20)(25,32,27,30)(26,29,28,31), (1,24)(2,21)(3,22)(4,23)(5,10)(6,11)(7,12)(8,9)(13,30)(14,31)(15,32)(16,29)(17,27)(18,28)(19,25)(20,26), (1,15,24,25)(2,16,21,26)(3,13,22,27)(4,14,23,28)(5,29,12,20)(6,30,9,17)(7,31,10,18)(8,32,11,19), (1,26)(2,25)(3,28)(4,27)(5,19)(6,18)(7,17)(8,20)(9,31)(10,30)(11,29)(12,32)(13,23)(14,22)(15,21)(16,24) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,9,3,11),(2,10,4,12),(5,21,7,23),(6,22,8,24),(13,17,15,19),(14,18,16,20),(25,32,27,30),(26,29,28,31)], [(1,24),(2,21),(3,22),(4,23),(5,10),(6,11),(7,12),(8,9),(13,30),(14,31),(15,32),(16,29),(17,27),(18,28),(19,25),(20,26)], [(1,15,24,25),(2,16,21,26),(3,13,22,27),(4,14,23,28),(5,29,12,20),(6,30,9,17),(7,31,10,18),(8,32,11,19)], [(1,26),(2,25),(3,28),(4,27),(5,19),(6,18),(7,17),(8,20),(9,31),(10,30),(11,29),(12,32),(13,23),(14,22),(15,21),(16,24)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | ··· | 2M | 2N | 2O | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | 8B | 8C | 8D | 8E | 8F |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D4oD8 |
kernel | C4oD4:D4 | (C22xC8):C2 | C23.24D4 | C23.37D4 | C22:D8 | D4:D4 | C22.29C24 | C22xD8 | C2xC8:C22 | C2x2+ 1+4 | C2xD4 | C2xQ8 | C4oD4 | C2 |
# reps | 1 | 1 | 1 | 1 | 4 | 4 | 1 | 1 | 1 | 1 | 7 | 1 | 4 | 4 |
Matrix representation of C4oD4:D4 ►in GL6(F17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 15 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 3 | 0 | 0 |
0 | 0 | 3 | 14 | 0 | 0 |
0 | 0 | 0 | 0 | 14 | 14 |
0 | 0 | 0 | 0 | 14 | 3 |
0 | 2 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 14 | 3 |
0 | 0 | 0 | 0 | 3 | 3 |
0 | 0 | 14 | 3 | 0 | 0 |
0 | 0 | 3 | 3 | 0 | 0 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,16,0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,16,0],[0,9,0,0,0,0,15,0,0,0,0,0,0,0,3,3,0,0,0,0,3,14,0,0,0,0,0,0,14,14,0,0,0,0,14,3],[0,9,0,0,0,0,2,0,0,0,0,0,0,0,0,0,14,3,0,0,0,0,3,3,0,0,14,3,0,0,0,0,3,3,0,0] >;
C4oD4:D4 in GAP, Magma, Sage, TeX
C_4\circ D_4\rtimes D_4
% in TeX
G:=Group("C4oD4:D4");
// GroupNames label
G:=SmallGroup(128,1740);
// by ID
G=gap.SmallGroup(128,1740);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,758,521,2804,1411,172]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=c^2=d^4=e^2=1,b^2=a^2,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^-1,c*b*c=d*b*d^-1=e*b*e=a^2*b,d*c*d^-1=e*c*e=b*c,e*d*e=d^-1>;
// generators/relations