p-group, metabelian, nilpotent (class 3), monomial
Aliases: C8.D4⋊3C2, C8.110(C2×D4), (C2×C8).144D4, (C2×D4).218D4, C4⋊C4.28C23, (C2×Q8).173D4, C2.10(Q8○D8), C23.77(C2×D4), C8.18D4⋊34C2, C4.71(C4⋊D4), (C2×C8).255C23, (C2×C4).263C24, (C22×Q16)⋊16C2, C4.157(C22×D4), (C2×Q8).53C23, C2.D8.162C22, C4.Q8.130C22, C22⋊Q8.19C22, C23.25D4⋊29C2, C23.38D4⋊35C2, C22.88(C4⋊D4), (C22×C8).260C22, (C22×C4).985C23, (C2×Q16).117C22, C22.523(C22×D4), Q8⋊C4.122C22, (C22×Q8).283C22, C42⋊C2.112C22, (C2×M4(2)).265C22, C23.38C23.11C2, (C2×C8○D4).9C2, C4.30(C2×C4○D4), (C2×C4).131(C2×D4), C2.81(C2×C4⋊D4), (C2×C4).284(C4○D4), (C2×C4○D4).303C22, SmallGroup(128,1791)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8.D4⋊C2
G = < a,b,c,d | a8=b4=d2=1, c2=a4, bab-1=a3, cac-1=a-1, ad=da, cbc-1=a4b-1, dbd=a4b, cd=dc >
Subgroups: 396 in 230 conjugacy classes, 100 normal (20 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C2×C8, M4(2), Q16, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, Q8⋊C4, C4.Q8, C2.D8, C42⋊C2, C22⋊Q8, C22.D4, C4.4D4, C4⋊Q8, C22×C8, C22×C8, C2×M4(2), C2×M4(2), C8○D4, C2×Q16, C2×Q16, C22×Q8, C2×C4○D4, C23.38D4, C23.25D4, C8.18D4, C8.D4, C23.38C23, C2×C8○D4, C22×Q16, C8.D4⋊C2
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C4⋊D4, C22×D4, C2×C4○D4, C2×C4⋊D4, Q8○D8, C8.D4⋊C2
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 57 43 36)(2 60 44 39)(3 63 45 34)(4 58 46 37)(5 61 47 40)(6 64 48 35)(7 59 41 38)(8 62 42 33)(9 27 18 53)(10 30 19 56)(11 25 20 51)(12 28 21 54)(13 31 22 49)(14 26 23 52)(15 29 24 55)(16 32 17 50)
(1 40 5 36)(2 39 6 35)(3 38 7 34)(4 37 8 33)(9 49 13 53)(10 56 14 52)(11 55 15 51)(12 54 16 50)(17 32 21 28)(18 31 22 27)(19 30 23 26)(20 29 24 25)(41 63 45 59)(42 62 46 58)(43 61 47 57)(44 60 48 64)
(1 14)(2 15)(3 16)(4 9)(5 10)(6 11)(7 12)(8 13)(17 45)(18 46)(19 47)(20 48)(21 41)(22 42)(23 43)(24 44)(25 60)(26 61)(27 62)(28 63)(29 64)(30 57)(31 58)(32 59)(33 53)(34 54)(35 55)(36 56)(37 49)(38 50)(39 51)(40 52)
G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,57,43,36)(2,60,44,39)(3,63,45,34)(4,58,46,37)(5,61,47,40)(6,64,48,35)(7,59,41,38)(8,62,42,33)(9,27,18,53)(10,30,19,56)(11,25,20,51)(12,28,21,54)(13,31,22,49)(14,26,23,52)(15,29,24,55)(16,32,17,50), (1,40,5,36)(2,39,6,35)(3,38,7,34)(4,37,8,33)(9,49,13,53)(10,56,14,52)(11,55,15,51)(12,54,16,50)(17,32,21,28)(18,31,22,27)(19,30,23,26)(20,29,24,25)(41,63,45,59)(42,62,46,58)(43,61,47,57)(44,60,48,64), (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,45)(18,46)(19,47)(20,48)(21,41)(22,42)(23,43)(24,44)(25,60)(26,61)(27,62)(28,63)(29,64)(30,57)(31,58)(32,59)(33,53)(34,54)(35,55)(36,56)(37,49)(38,50)(39,51)(40,52)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,57,43,36)(2,60,44,39)(3,63,45,34)(4,58,46,37)(5,61,47,40)(6,64,48,35)(7,59,41,38)(8,62,42,33)(9,27,18,53)(10,30,19,56)(11,25,20,51)(12,28,21,54)(13,31,22,49)(14,26,23,52)(15,29,24,55)(16,32,17,50), (1,40,5,36)(2,39,6,35)(3,38,7,34)(4,37,8,33)(9,49,13,53)(10,56,14,52)(11,55,15,51)(12,54,16,50)(17,32,21,28)(18,31,22,27)(19,30,23,26)(20,29,24,25)(41,63,45,59)(42,62,46,58)(43,61,47,57)(44,60,48,64), (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,45)(18,46)(19,47)(20,48)(21,41)(22,42)(23,43)(24,44)(25,60)(26,61)(27,62)(28,63)(29,64)(30,57)(31,58)(32,59)(33,53)(34,54)(35,55)(36,56)(37,49)(38,50)(39,51)(40,52) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,57,43,36),(2,60,44,39),(3,63,45,34),(4,58,46,37),(5,61,47,40),(6,64,48,35),(7,59,41,38),(8,62,42,33),(9,27,18,53),(10,30,19,56),(11,25,20,51),(12,28,21,54),(13,31,22,49),(14,26,23,52),(15,29,24,55),(16,32,17,50)], [(1,40,5,36),(2,39,6,35),(3,38,7,34),(4,37,8,33),(9,49,13,53),(10,56,14,52),(11,55,15,51),(12,54,16,50),(17,32,21,28),(18,31,22,27),(19,30,23,26),(20,29,24,25),(41,63,45,59),(42,62,46,58),(43,61,47,57),(44,60,48,64)], [(1,14),(2,15),(3,16),(4,9),(5,10),(6,11),(7,12),(8,13),(17,45),(18,46),(19,47),(20,48),(21,41),(22,42),(23,43),(24,44),(25,60),(26,61),(27,62),(28,63),(29,64),(30,57),(31,58),(32,59),(33,53),(34,54),(35,55),(36,56),(37,49),(38,50),(39,51),(40,52)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4N | 8A | 8B | 8C | 8D | 8E | ··· | 8J |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | ··· | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | C4○D4 | Q8○D8 |
kernel | C8.D4⋊C2 | C23.38D4 | C23.25D4 | C8.18D4 | C8.D4 | C23.38C23 | C2×C8○D4 | C22×Q16 | C2×C8 | C2×D4 | C2×Q8 | C2×C4 | C2 |
# reps | 1 | 2 | 1 | 4 | 4 | 2 | 1 | 1 | 4 | 3 | 1 | 4 | 4 |
Matrix representation of C8.D4⋊C2 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 14 |
0 | 0 | 0 | 0 | 3 | 3 |
0 | 0 | 3 | 14 | 0 | 0 |
0 | 0 | 3 | 3 | 0 | 0 |
3 | 4 | 0 | 0 | 0 | 0 |
6 | 14 | 0 | 0 | 0 | 0 |
0 | 0 | 10 | 16 | 0 | 0 |
0 | 0 | 16 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 1 |
0 | 0 | 0 | 0 | 1 | 10 |
3 | 4 | 0 | 0 | 0 | 0 |
15 | 14 | 0 | 0 | 0 | 0 |
0 | 0 | 10 | 16 | 0 | 0 |
0 | 0 | 16 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 10 | 16 |
0 | 0 | 0 | 0 | 16 | 7 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,3,3,0,0,0,0,14,3,0,0,3,3,0,0,0,0,14,3,0,0],[3,6,0,0,0,0,4,14,0,0,0,0,0,0,10,16,0,0,0,0,16,7,0,0,0,0,0,0,7,1,0,0,0,0,1,10],[3,15,0,0,0,0,4,14,0,0,0,0,0,0,10,16,0,0,0,0,16,7,0,0,0,0,0,0,10,16,0,0,0,0,16,7],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0] >;
C8.D4⋊C2 in GAP, Magma, Sage, TeX
C_8.D_4\rtimes C_2
% in TeX
G:=Group("C8.D4:C2");
// GroupNames label
G:=SmallGroup(128,1791);
// by ID
G=gap.SmallGroup(128,1791);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,568,758,521,2804,172]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^4=d^2=1,c^2=a^4,b*a*b^-1=a^3,c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=a^4*b^-1,d*b*d=a^4*b,c*d=d*c>;
// generators/relations