metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D20⋊18D4, Dic10⋊18D4, M4(2)⋊5D10, (C5×D4)⋊7D4, (C5×Q8)⋊7D4, (C2×D4)⋊4D10, C8⋊C22⋊1D5, C20⋊D4⋊7C2, D4⋊4(C5⋊D4), C5⋊4(D4⋊4D4), C4○D4.5D10, Q8⋊4(C5⋊D4), C4.104(D4×D5), D20⋊7C4⋊9C2, D4⋊8D10⋊2C2, C20.194(C2×D4), (D4×C10)⋊4C22, (C22×D5).5D4, C22.35(D4×D5), C10.63C22≀C2, D4⋊2Dic5⋊6C2, D4.D10⋊5C2, C20.46D4⋊9C2, (C2×C20).13C23, (C4×Dic5)⋊5C22, C4.Dic5⋊8C22, C4○D20.23C22, C2.31(C23⋊D10), (C2×D20).132C22, (C5×M4(2))⋊15C22, (C5×C8⋊C22)⋊5C2, C4.50(C2×C5⋊D4), (C2×C10).34(C2×D4), (C2×C4).13(C22×D5), (C5×C4○D4).11C22, SmallGroup(320,825)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C2×C4 — C8⋊C22 |
Generators and relations for D20⋊18D4
G = < a,b,c,d | a20=b2=c4=d2=1, bab=dad=a-1, cac-1=a9, cbc-1=a13b, dbd=a18b, dcd=c-1 >
Subgroups: 878 in 168 conjugacy classes, 39 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, D5, C10, C10, C42, M4(2), M4(2), D8, SD16, C2×D4, C2×D4, C4○D4, C4○D4, Dic5, C20, C20, D10, C2×C10, C2×C10, C4.D4, C4≀C2, C4⋊1D4, C8⋊C22, C8⋊C22, 2+ 1+4, C5⋊2C8, C40, Dic10, C4×D5, D20, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, C22×D5, C22×D5, C22×C10, D4⋊4D4, C4.Dic5, C4×Dic5, D4⋊D5, D4.D5, C5×M4(2), C5×D8, C5×SD16, C2×D20, C2×D20, C4○D20, C4○D20, D4×D5, Q8⋊2D5, C2×C5⋊D4, D4×C10, C5×C4○D4, C20.46D4, D20⋊7C4, D4⋊2Dic5, D4.D10, C20⋊D4, C5×C8⋊C22, D4⋊8D10, D20⋊18D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, D10, C22≀C2, C5⋊D4, C22×D5, D4⋊4D4, D4×D5, C2×C5⋊D4, C23⋊D10, D20⋊18D4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 34)(2 33)(3 32)(4 31)(5 30)(6 29)(7 28)(8 27)(9 26)(10 25)(11 24)(12 23)(13 22)(14 21)(15 40)(16 39)(17 38)(18 37)(19 36)(20 35)
(1 6 11 16)(2 15 12 5)(3 4 13 14)(7 20 17 10)(8 9 18 19)(21 29)(22 38)(23 27)(24 36)(26 34)(28 32)(31 39)(33 37)
(1 16)(2 15)(3 14)(4 13)(5 12)(6 11)(7 10)(8 9)(17 20)(18 19)(21 34)(22 33)(23 32)(24 31)(25 30)(26 29)(27 28)(35 40)(36 39)(37 38)
G:=sub<Sym(40)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,34)(2,33)(3,32)(4,31)(5,30)(6,29)(7,28)(8,27)(9,26)(10,25)(11,24)(12,23)(13,22)(14,21)(15,40)(16,39)(17,38)(18,37)(19,36)(20,35), (1,6,11,16)(2,15,12,5)(3,4,13,14)(7,20,17,10)(8,9,18,19)(21,29)(22,38)(23,27)(24,36)(26,34)(28,32)(31,39)(33,37), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9)(17,20)(18,19)(21,34)(22,33)(23,32)(24,31)(25,30)(26,29)(27,28)(35,40)(36,39)(37,38)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,34)(2,33)(3,32)(4,31)(5,30)(6,29)(7,28)(8,27)(9,26)(10,25)(11,24)(12,23)(13,22)(14,21)(15,40)(16,39)(17,38)(18,37)(19,36)(20,35), (1,6,11,16)(2,15,12,5)(3,4,13,14)(7,20,17,10)(8,9,18,19)(21,29)(22,38)(23,27)(24,36)(26,34)(28,32)(31,39)(33,37), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9)(17,20)(18,19)(21,34)(22,33)(23,32)(24,31)(25,30)(26,29)(27,28)(35,40)(36,39)(37,38) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,34),(2,33),(3,32),(4,31),(5,30),(6,29),(7,28),(8,27),(9,26),(10,25),(11,24),(12,23),(13,22),(14,21),(15,40),(16,39),(17,38),(18,37),(19,36),(20,35)], [(1,6,11,16),(2,15,12,5),(3,4,13,14),(7,20,17,10),(8,9,18,19),(21,29),(22,38),(23,27),(24,36),(26,34),(28,32),(31,39),(33,37)], [(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9),(17,20),(18,19),(21,34),(22,33),(23,32),(24,31),(25,30),(26,29),(27,28),(35,40),(36,39),(37,38)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 5A | 5B | 8A | 8B | 10A | 10B | 10C | 10D | 10E | ··· | 10J | 20A | 20B | 20C | 20D | 20E | 20F | 40A | 40B | 40C | 40D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 20 | 20 | 40 | 40 | 40 | 40 |
size | 1 | 1 | 2 | 4 | 8 | 20 | 20 | 20 | 2 | 2 | 4 | 20 | 20 | 20 | 2 | 2 | 8 | 40 | 2 | 2 | 4 | 4 | 8 | ··· | 8 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D4 | D4 | D5 | D10 | D10 | D10 | C5⋊D4 | C5⋊D4 | D4⋊4D4 | D4×D5 | D4×D5 | D20⋊18D4 |
kernel | D20⋊18D4 | C20.46D4 | D20⋊7C4 | D4⋊2Dic5 | D4.D10 | C20⋊D4 | C5×C8⋊C22 | D4⋊8D10 | Dic10 | D20 | C5×D4 | C5×Q8 | C22×D5 | C8⋊C22 | M4(2) | C2×D4 | C4○D4 | D4 | Q8 | C5 | C4 | C22 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 |
Matrix representation of D20⋊18D4 ►in GL8(𝔽41)
0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 40 | 1 | 2 |
0 | 0 | 0 | 0 | 1 | 0 | 40 | 40 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 40 | 40 | 1 | 2 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 1 | 1 |
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 34 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 40 |
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 | 40 | 39 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(8,GF(41))| [0,1,0,0,0,0,0,0,40,7,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,40,7,0,0,0,0,0,0,0,0,0,1,40,1,0,0,0,0,40,0,40,0,0,0,0,0,0,0,1,40,0,0,0,0,0,0,2,40],[0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,40,1,40,0,0,0,0,0,40,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,2,0,1],[40,7,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,34,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[40,7,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,7,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,39,1] >;
D20⋊18D4 in GAP, Magma, Sage, TeX
D_{20}\rtimes_{18}D_4
% in TeX
G:=Group("D20:18D4");
// GroupNames label
G:=SmallGroup(320,825);
// by ID
G=gap.SmallGroup(320,825);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,254,219,570,1684,851,438,102,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^20=b^2=c^4=d^2=1,b*a*b=d*a*d=a^-1,c*a*c^-1=a^9,c*b*c^-1=a^13*b,d*b*d=a^18*b,d*c*d=c^-1>;
// generators/relations