Copied to
clipboard

G = (C2×C4).D12order 192 = 26·3

3rd non-split extension by C2×C4 of D12 acting via D12/C3=D4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×C4).3D12, (C2×D12).3C4, (C2×C12).15D4, (C2×Q8).25D6, C4.10D45S3, (C4×Dic3).1C4, (C6×Q8).1C22, C12.10D41C2, C6.13(C23⋊C4), C31(C42.C4), C22.14(D6⋊C4), C12.23D4.1C2, C2.14(C23.6D6), (C2×C4).3(C4×S3), (C2×C12).3(C2×C4), (C2×C4).3(C3⋊D4), (C2×C6).7(C22⋊C4), (C3×C4.10D4)⋊11C2, SmallGroup(192,36)

Series: Derived Chief Lower central Upper central

C1C2×C12 — (C2×C4).D12
C1C3C6C2×C6C2×C12C6×Q8C12.23D4 — (C2×C4).D12
C3C6C2×C6C2×C12 — (C2×C4).D12
C1C2C22C2×Q8C4.10D4

Generators and relations for (C2×C4).D12
 G = < a,b,c,d | a2=b4=1, c12=b2, d2=b, cbc-1=ab=ba, cac-1=dad-1=ab2, bd=db, dcd-1=b-1c11 >

Subgroups: 240 in 64 conjugacy classes, 21 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, D6, C2×C6, C42, C22⋊C4, M4(2), C2×D4, C2×Q8, C3⋊C8, C24, D12, C2×Dic3, C2×C12, C3×Q8, C22×S3, C4.10D4, C4.10D4, C4.4D4, C4.Dic3, C4×Dic3, D6⋊C4, C3×M4(2), C2×D12, C6×Q8, C42.C4, C12.10D4, C3×C4.10D4, C12.23D4, (C2×C4).D12
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D6, C22⋊C4, C4×S3, D12, C3⋊D4, C23⋊C4, D6⋊C4, C42.C4, C23.6D6, (C2×C4).D12

Character table of (C2×C4).D12

 class 12A2B2C34A4B4C4D4E6A6B8A8B8C8D12A12B12C12D24A24B24C24D
 size 11224244412122488242444888888
ρ1111111111111111111111111    trivial
ρ2111111111111-1-1-1-11111-1-1-1-1    linear of order 2
ρ3111-11111-1-11111-1-111111111    linear of order 2
ρ4111-11111-1-111-1-1111111-1-1-1-1    linear of order 2
ρ511111-1-11-1-111i-i-ii-1-1-11-i-iii    linear of order 4
ρ6111-11-1-111111i-ii-i-1-1-11-i-iii    linear of order 4
ρ711111-1-11-1-111-iii-i-1-1-11ii-i-i    linear of order 4
ρ8111-11-1-111111-ii-ii-1-1-11ii-i-i    linear of order 4
ρ922202-22-200220000-2-22-20000    orthogonal lifted from D4
ρ102220-122200-1-12200-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ112220-122200-1-1-2-200-1-1-1-11111    orthogonal lifted from D6
ρ12222022-2-20022000022-2-20000    orthogonal lifted from D4
ρ132220-1-22-200-1-1000011-113-33-3    orthogonal lifted from D12
ρ142220-1-22-200-1-1000011-11-33-33    orthogonal lifted from D12
ρ152220-1-2-2200-1-1-2i2i00111-1-i-iii    complex lifted from C4×S3
ρ162220-1-2-2200-1-12i-2i00111-1ii-i-i    complex lifted from C4×S3
ρ172220-12-2-200-1-10000-1-111--3-3-3--3    complex lifted from C3⋊D4
ρ182220-12-2-200-1-10000-1-111-3--3--3-3    complex lifted from C3⋊D4
ρ1944-404000004-4000000000000    orthogonal lifted from C23⋊C4
ρ2044-40-200000-2200002-3-2-3000000    complex lifted from C23.6D6
ρ2144-40-200000-220000-2-32-3000000    complex lifted from C23.6D6
ρ224-4004000-2i2i-40000000000000    complex lifted from C42.C4
ρ234-40040002i-2i-40000000000000    complex lifted from C42.C4
ρ248-800-40000040000000000000    orthogonal faithful, Schur index 2

Smallest permutation representation of (C2×C4).D12
On 48 points
Generators in S48
(2 14)(4 16)(6 18)(8 20)(10 22)(12 24)(26 38)(28 40)(30 42)(32 44)(34 46)(36 48)
(1 45 13 33)(2 46 14 34)(3 35 15 47)(4 36 16 48)(5 25 17 37)(6 26 18 38)(7 39 19 27)(8 40 20 28)(9 29 21 41)(10 30 22 42)(11 43 23 31)(12 44 24 32)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 32 45 12 13 44 33 24)(2 11 46 43 14 23 34 31)(3 30 35 22 15 42 47 10)(4 21 36 41 16 9 48 29)(5 28 25 8 17 40 37 20)(6 7 26 39 18 19 38 27)

G:=sub<Sym(48)| (2,14)(4,16)(6,18)(8,20)(10,22)(12,24)(26,38)(28,40)(30,42)(32,44)(34,46)(36,48), (1,45,13,33)(2,46,14,34)(3,35,15,47)(4,36,16,48)(5,25,17,37)(6,26,18,38)(7,39,19,27)(8,40,20,28)(9,29,21,41)(10,30,22,42)(11,43,23,31)(12,44,24,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,32,45,12,13,44,33,24)(2,11,46,43,14,23,34,31)(3,30,35,22,15,42,47,10)(4,21,36,41,16,9,48,29)(5,28,25,8,17,40,37,20)(6,7,26,39,18,19,38,27)>;

G:=Group( (2,14)(4,16)(6,18)(8,20)(10,22)(12,24)(26,38)(28,40)(30,42)(32,44)(34,46)(36,48), (1,45,13,33)(2,46,14,34)(3,35,15,47)(4,36,16,48)(5,25,17,37)(6,26,18,38)(7,39,19,27)(8,40,20,28)(9,29,21,41)(10,30,22,42)(11,43,23,31)(12,44,24,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,32,45,12,13,44,33,24)(2,11,46,43,14,23,34,31)(3,30,35,22,15,42,47,10)(4,21,36,41,16,9,48,29)(5,28,25,8,17,40,37,20)(6,7,26,39,18,19,38,27) );

G=PermutationGroup([[(2,14),(4,16),(6,18),(8,20),(10,22),(12,24),(26,38),(28,40),(30,42),(32,44),(34,46),(36,48)], [(1,45,13,33),(2,46,14,34),(3,35,15,47),(4,36,16,48),(5,25,17,37),(6,26,18,38),(7,39,19,27),(8,40,20,28),(9,29,21,41),(10,30,22,42),(11,43,23,31),(12,44,24,32)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,32,45,12,13,44,33,24),(2,11,46,43,14,23,34,31),(3,30,35,22,15,42,47,10),(4,21,36,41,16,9,48,29),(5,28,25,8,17,40,37,20),(6,7,26,39,18,19,38,27)]])

Matrix representation of (C2×C4).D12 in GL6(𝔽73)

100000
010000
001000
000100
0010720
0010072
,
100000
010000
00465400
0002700
004627027
004627270
,
010000
7210000
0010710
0000721
00600720
001446720
,
7210000
010000
0010710
00107272
001446720
00600720

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,46,0,46,46,0,0,54,27,27,27,0,0,0,0,0,27,0,0,0,0,27,0],[0,72,0,0,0,0,1,1,0,0,0,0,0,0,1,0,60,14,0,0,0,0,0,46,0,0,71,72,72,72,0,0,0,1,0,0],[72,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,14,60,0,0,0,0,46,0,0,0,71,72,72,72,0,0,0,72,0,0] >;

(C2×C4).D12 in GAP, Magma, Sage, TeX

(C_2\times C_4).D_{12}
% in TeX

G:=Group("(C2xC4).D12");
// GroupNames label

G:=SmallGroup(192,36);
// by ID

G=gap.SmallGroup(192,36);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,141,36,422,184,1123,794,297,136,851,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=1,c^12=b^2,d^2=b,c*b*c^-1=a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^2,b*d=d*b,d*c*d^-1=b^-1*c^11>;
// generators/relations

Export

Character table of (C2×C4).D12 in TeX

׿
×
𝔽