extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Q8)⋊D6 = D4.4S4 | φ: D6/C1 → D6 ⊆ Out C2×Q8 | 16 | 4 | (C2xQ8):D6 | 192,1485 |
(C2×Q8)⋊2D6 = C22×GL2(𝔽3) | φ: D6/C2 → S3 ⊆ Out C2×Q8 | 32 | | (C2xQ8):2D6 | 192,1475 |
(C2×Q8)⋊3D6 = C2×Q8.D6 | φ: D6/C2 → S3 ⊆ Out C2×Q8 | 32 | | (C2xQ8):3D6 | 192,1476 |
(C2×Q8)⋊4D6 = D12.36D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 48 | | (C2xQ8):4D6 | 192,605 |
(C2×Q8)⋊5D6 = C42⋊7D6 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 48 | 4 | (C2xQ8):5D6 | 192,620 |
(C2×Q8)⋊6D6 = D6⋊6SD16 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 48 | | (C2xQ8):6D6 | 192,728 |
(C2×Q8)⋊7D6 = D12.39D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 48 | 8+ | (C2xQ8):7D6 | 192,761 |
(C2×Q8)⋊8D6 = C6.512+ 1+4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 48 | | (C2xQ8):8D6 | 192,1193 |
(C2×Q8)⋊9D6 = C6.532+ 1+4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 48 | | (C2xQ8):9D6 | 192,1196 |
(C2×Q8)⋊10D6 = C6.562+ 1+4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 48 | | (C2xQ8):10D6 | 192,1203 |
(C2×Q8)⋊11D6 = C42⋊22D6 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 48 | | (C2xQ8):11D6 | 192,1237 |
(C2×Q8)⋊12D6 = C42⋊23D6 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 48 | | (C2xQ8):12D6 | 192,1238 |
(C2×Q8)⋊13D6 = C42⋊24D6 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 48 | | (C2xQ8):13D6 | 192,1242 |
(C2×Q8)⋊14D6 = SD16⋊13D6 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 48 | 4 | (C2xQ8):14D6 | 192,1321 |
(C2×Q8)⋊15D6 = C24.C23 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 48 | 8+ | (C2xQ8):15D6 | 192,1337 |
(C2×Q8)⋊16D6 = D12.34C23 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 48 | 8+ | (C2xQ8):16D6 | 192,1396 |
(C2×Q8)⋊17D6 = S3×C22⋊Q8 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 48 | | (C2xQ8):17D6 | 192,1185 |
(C2×Q8)⋊18D6 = C4⋊C4⋊26D6 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 48 | | (C2xQ8):18D6 | 192,1186 |
(C2×Q8)⋊19D6 = D12⋊21D4 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 48 | | (C2xQ8):19D6 | 192,1189 |
(C2×Q8)⋊20D6 = S3×C4.4D4 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 48 | | (C2xQ8):20D6 | 192,1232 |
(C2×Q8)⋊21D6 = C42⋊20D6 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 48 | | (C2xQ8):21D6 | 192,1233 |
(C2×Q8)⋊22D6 = D12⋊10D4 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 48 | | (C2xQ8):22D6 | 192,1235 |
(C2×Q8)⋊23D6 = C2×S3×SD16 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 48 | | (C2xQ8):23D6 | 192,1317 |
(C2×Q8)⋊24D6 = C2×Q8⋊3D6 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 48 | | (C2xQ8):24D6 | 192,1318 |
(C2×Q8)⋊25D6 = S3×C8.C22 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 48 | 8- | (C2xQ8):25D6 | 192,1335 |
(C2×Q8)⋊26D6 = D24⋊C22 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 48 | 8+ | (C2xQ8):26D6 | 192,1336 |
(C2×Q8)⋊27D6 = S3×2- 1+4 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 48 | 8- | (C2xQ8):27D6 | 192,1526 |
(C2×Q8)⋊28D6 = D12.39C23 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 48 | 8+ | (C2xQ8):28D6 | 192,1527 |
(C2×Q8)⋊29D6 = C22×Q8⋊2S3 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8):29D6 | 192,1366 |
(C2×Q8)⋊30D6 = C2×Q8.11D6 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8):30D6 | 192,1367 |
(C2×Q8)⋊31D6 = C2×D6⋊3Q8 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8):31D6 | 192,1372 |
(C2×Q8)⋊32D6 = C2×C12.23D4 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8):32D6 | 192,1373 |
(C2×Q8)⋊33D6 = C2×D4⋊D6 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 48 | | (C2xQ8):33D6 | 192,1379 |
(C2×Q8)⋊34D6 = C12.C24 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 48 | 4 | (C2xQ8):34D6 | 192,1381 |
(C2×Q8)⋊35D6 = (C2×D4)⋊43D6 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 48 | | (C2xQ8):35D6 | 192,1387 |
(C2×Q8)⋊36D6 = C6.1452+ 1+4 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 48 | | (C2xQ8):36D6 | 192,1388 |
(C2×Q8)⋊37D6 = C6.1462+ 1+4 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 48 | | (C2xQ8):37D6 | 192,1389 |
(C2×Q8)⋊38D6 = C2×Q8.15D6 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8):38D6 | 192,1519 |
(C2×Q8)⋊39D6 = C6.C25 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 48 | 4 | (C2xQ8):39D6 | 192,1523 |
(C2×Q8)⋊40D6 = C22×Q8⋊3S3 | φ: trivial image | 96 | | (C2xQ8):40D6 | 192,1518 |
(C2×Q8)⋊41D6 = C2×S3×C4○D4 | φ: trivial image | 48 | | (C2xQ8):41D6 | 192,1520 |
(C2×Q8)⋊42D6 = C2×D4○D12 | φ: trivial image | 48 | | (C2xQ8):42D6 | 192,1521 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Q8).D6 = D4.5S4 | φ: D6/C1 → D6 ⊆ Out C2×Q8 | 32 | 4- | (C2xQ8).D6 | 192,1486 |
(C2×Q8).2D6 = Q8⋊Dic6 | φ: D6/C2 → S3 ⊆ Out C2×Q8 | 64 | | (C2xQ8).2D6 | 192,945 |
(C2×Q8).3D6 = C4×CSU2(𝔽3) | φ: D6/C2 → S3 ⊆ Out C2×Q8 | 64 | | (C2xQ8).3D6 | 192,946 |
(C2×Q8).4D6 = CSU2(𝔽3)⋊C4 | φ: D6/C2 → S3 ⊆ Out C2×Q8 | 64 | | (C2xQ8).4D6 | 192,947 |
(C2×Q8).5D6 = Q8.Dic6 | φ: D6/C2 → S3 ⊆ Out C2×Q8 | 64 | | (C2xQ8).5D6 | 192,948 |
(C2×Q8).6D6 = Q8.D12 | φ: D6/C2 → S3 ⊆ Out C2×Q8 | 64 | | (C2xQ8).6D6 | 192,949 |
(C2×Q8).7D6 = SL2(𝔽3)⋊Q8 | φ: D6/C2 → S3 ⊆ Out C2×Q8 | 64 | | (C2xQ8).7D6 | 192,950 |
(C2×Q8).8D6 = C4×GL2(𝔽3) | φ: D6/C2 → S3 ⊆ Out C2×Q8 | 32 | | (C2xQ8).8D6 | 192,951 |
(C2×Q8).9D6 = Q8⋊D12 | φ: D6/C2 → S3 ⊆ Out C2×Q8 | 32 | | (C2xQ8).9D6 | 192,952 |
(C2×Q8).10D6 = GL2(𝔽3)⋊C4 | φ: D6/C2 → S3 ⊆ Out C2×Q8 | 32 | | (C2xQ8).10D6 | 192,953 |
(C2×Q8).11D6 = Q8.2D12 | φ: D6/C2 → S3 ⊆ Out C2×Q8 | 32 | | (C2xQ8).11D6 | 192,954 |
(C2×Q8).12D6 = C2×Q8⋊Dic3 | φ: D6/C2 → S3 ⊆ Out C2×Q8 | 64 | | (C2xQ8).12D6 | 192,977 |
(C2×Q8).13D6 = C23.14S4 | φ: D6/C2 → S3 ⊆ Out C2×Q8 | 32 | | (C2xQ8).13D6 | 192,978 |
(C2×Q8).14D6 = C23.15S4 | φ: D6/C2 → S3 ⊆ Out C2×Q8 | 32 | | (C2xQ8).14D6 | 192,979 |
(C2×Q8).15D6 = C23.16S4 | φ: D6/C2 → S3 ⊆ Out C2×Q8 | 32 | | (C2xQ8).15D6 | 192,980 |
(C2×Q8).16D6 = C4.A4⋊C4 | φ: D6/C2 → S3 ⊆ Out C2×Q8 | 64 | | (C2xQ8).16D6 | 192,983 |
(C2×Q8).17D6 = SL2(𝔽3).D4 | φ: D6/C2 → S3 ⊆ Out C2×Q8 | 64 | | (C2xQ8).17D6 | 192,984 |
(C2×Q8).18D6 = (C2×C4).S4 | φ: D6/C2 → S3 ⊆ Out C2×Q8 | 64 | | (C2xQ8).18D6 | 192,985 |
(C2×Q8).19D6 = SL2(𝔽3)⋊D4 | φ: D6/C2 → S3 ⊆ Out C2×Q8 | 32 | | (C2xQ8).19D6 | 192,986 |
(C2×Q8).20D6 = C22×CSU2(𝔽3) | φ: D6/C2 → S3 ⊆ Out C2×Q8 | 64 | | (C2xQ8).20D6 | 192,1474 |
(C2×Q8).21D6 = C2×C4.S4 | φ: D6/C2 → S3 ⊆ Out C2×Q8 | 64 | | (C2xQ8).21D6 | 192,1479 |
(C2×Q8).22D6 = C2×C4.6S4 | φ: D6/C2 → S3 ⊆ Out C2×Q8 | 32 | | (C2xQ8).22D6 | 192,1480 |
(C2×Q8).23D6 = C2×C4.3S4 | φ: D6/C2 → S3 ⊆ Out C2×Q8 | 32 | | (C2xQ8).23D6 | 192,1481 |
(C2×Q8).24D6 = GL2(𝔽3)⋊C22 | φ: D6/C2 → S3 ⊆ Out C2×Q8 | 32 | 4 | (C2xQ8).24D6 | 192,1482 |
(C2×Q8).25D6 = (C2×C4).D12 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 48 | 8+ | (C2xQ8).25D6 | 192,36 |
(C2×Q8).26D6 = (C2×C12).D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 48 | 8- | (C2xQ8).26D6 | 192,37 |
(C2×Q8).27D6 = C42.Dic3 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 48 | 4 | (C2xQ8).27D6 | 192,101 |
(C2×Q8).28D6 = C42.3Dic3 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 48 | 4 | (C2xQ8).28D6 | 192,107 |
(C2×Q8).29D6 = D12.4D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 48 | 8- | (C2xQ8).29D6 | 192,311 |
(C2×Q8).30D6 = D12.5D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 48 | 8+ | (C2xQ8).30D6 | 192,312 |
(C2×Q8).31D6 = D12.6D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 48 | 8+ | (C2xQ8).31D6 | 192,313 |
(C2×Q8).32D6 = D12.7D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | 8- | (C2xQ8).32D6 | 192,314 |
(C2×Q8).33D6 = Dic3.1Q16 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 192 | | (C2xQ8).33D6 | 192,351 |
(C2×Q8).34D6 = (C2×C8).D6 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).34D6 | 192,353 |
(C2×Q8).35D6 = Dic3⋊Q16 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 192 | | (C2xQ8).35D6 | 192,354 |
(C2×Q8).36D6 = (C2×Q8).36D6 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 192 | | (C2xQ8).36D6 | 192,356 |
(C2×Q8).37D6 = Dic6.11D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).37D6 | 192,357 |
(C2×Q8).38D6 = Q8⋊C4⋊S3 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).38D6 | 192,359 |
(C2×Q8).39D6 = D6.1SD16 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).39D6 | 192,364 |
(C2×Q8).40D6 = D6⋊2SD16 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).40D6 | 192,366 |
(C2×Q8).41D6 = D6.Q16 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).41D6 | 192,370 |
(C2×Q8).42D6 = C3⋊(C8⋊D4) | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).42D6 | 192,371 |
(C2×Q8).43D6 = D6⋊1Q16 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).43D6 | 192,372 |
(C2×Q8).44D6 = D6⋊C8.C2 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).44D6 | 192,373 |
(C2×Q8).45D6 = C8⋊Dic3⋊C2 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).45D6 | 192,374 |
(C2×Q8).46D6 = C3⋊C8.D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).46D6 | 192,375 |
(C2×Q8).47D6 = Dic3⋊SD16 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).47D6 | 192,377 |
(C2×Q8).48D6 = D12.12D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).48D6 | 192,378 |
(C2×Q8).49D6 = (C2×Q8).49D6 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).49D6 | 192,602 |
(C2×Q8).50D6 = (C2×C6).Q16 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).50D6 | 192,603 |
(C2×Q8).51D6 = (C2×Q8).51D6 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).51D6 | 192,604 |
(C2×Q8).52D6 = D12.37D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).52D6 | 192,606 |
(C2×Q8).53D6 = C3⋊C8⋊24D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).53D6 | 192,607 |
(C2×Q8).54D6 = C3⋊C8⋊6D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).54D6 | 192,608 |
(C2×Q8).55D6 = Dic6.37D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).55D6 | 192,609 |
(C2×Q8).56D6 = C3⋊C8.29D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).56D6 | 192,610 |
(C2×Q8).57D6 = C3⋊C8.6D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).57D6 | 192,611 |
(C2×Q8).58D6 = C42.61D6 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).58D6 | 192,613 |
(C2×Q8).59D6 = C42.62D6 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).59D6 | 192,614 |
(C2×Q8).60D6 = C42.213D6 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).60D6 | 192,615 |
(C2×Q8).61D6 = D12.23D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).61D6 | 192,616 |
(C2×Q8).62D6 = C42.64D6 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).62D6 | 192,617 |
(C2×Q8).63D6 = C42.214D6 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).63D6 | 192,618 |
(C2×Q8).64D6 = C42.65D6 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).64D6 | 192,619 |
(C2×Q8).65D6 = D12.14D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 48 | 4 | (C2xQ8).65D6 | 192,621 |
(C2×Q8).66D6 = C12.9Q16 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 192 | | (C2xQ8).66D6 | 192,638 |
(C2×Q8).67D6 = C42.77D6 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 192 | | (C2xQ8).67D6 | 192,641 |
(C2×Q8).68D6 = C12⋊5SD16 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).68D6 | 192,642 |
(C2×Q8).69D6 = C12⋊6SD16 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).69D6 | 192,644 |
(C2×Q8).70D6 = C42.80D6 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).70D6 | 192,645 |
(C2×Q8).71D6 = C12⋊Q16 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 192 | | (C2xQ8).71D6 | 192,649 |
(C2×Q8).72D6 = C12⋊3Q16 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 192 | | (C2xQ8).72D6 | 192,651 |
(C2×Q8).73D6 = D12.15D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 48 | 4 | (C2xQ8).73D6 | 192,654 |
(C2×Q8).74D6 = Dic3⋊3SD16 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).74D6 | 192,721 |
(C2×Q8).75D6 = (C3×D4).D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).75D6 | 192,724 |
(C2×Q8).76D6 = C24.31D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).76D6 | 192,726 |
(C2×Q8).77D6 = C24.43D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).77D6 | 192,727 |
(C2×Q8).78D6 = C24⋊14D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).78D6 | 192,730 |
(C2×Q8).79D6 = Dic6.16D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).79D6 | 192,732 |
(C2×Q8).80D6 = C24⋊8D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).80D6 | 192,733 |
(C2×Q8).81D6 = C24⋊15D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).81D6 | 192,734 |
(C2×Q8).82D6 = C24⋊9D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).82D6 | 192,735 |
(C2×Q8).83D6 = C24.44D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 48 | 4 | (C2xQ8).83D6 | 192,736 |
(C2×Q8).84D6 = C24.26D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 192 | | (C2xQ8).84D6 | 192,742 |
(C2×Q8).85D6 = (C2×Q16)⋊S3 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).85D6 | 192,744 |
(C2×Q8).86D6 = D6⋊5Q16 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).86D6 | 192,745 |
(C2×Q8).87D6 = D12.17D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).87D6 | 192,746 |
(C2×Q8).88D6 = D6⋊3Q16 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).88D6 | 192,747 |
(C2×Q8).89D6 = C24.36D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).89D6 | 192,748 |
(C2×Q8).90D6 = C24.37D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).90D6 | 192,749 |
(C2×Q8).91D6 = C24.28D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).91D6 | 192,750 |
(C2×Q8).92D6 = C24.29D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | 4 | (C2xQ8).92D6 | 192,751 |
(C2×Q8).93D6 = M4(2).15D6 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 48 | 8+ | (C2xQ8).93D6 | 192,762 |
(C2×Q8).94D6 = M4(2).16D6 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | 8- | (C2xQ8).94D6 | 192,763 |
(C2×Q8).95D6 = D12.40D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 48 | 8- | (C2xQ8).95D6 | 192,764 |
(C2×Q8).96D6 = 2- 1+4⋊4S3 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 48 | 8+ | (C2xQ8).96D6 | 192,804 |
(C2×Q8).97D6 = 2- 1+4.2S3 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 48 | 8- | (C2xQ8).97D6 | 192,805 |
(C2×Q8).98D6 = C6.752- 1+4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).98D6 | 192,1182 |
(C2×Q8).99D6 = C6.522+ 1+4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).99D6 | 192,1195 |
(C2×Q8).100D6 = C6.202- 1+4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).100D6 | 192,1197 |
(C2×Q8).101D6 = C6.222- 1+4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).101D6 | 192,1199 |
(C2×Q8).102D6 = C6.782- 1+4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).102D6 | 192,1204 |
(C2×Q8).103D6 = C6.252- 1+4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).103D6 | 192,1205 |
(C2×Q8).104D6 = C6.592+ 1+4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).104D6 | 192,1206 |
(C2×Q8).105D6 = C42.137D6 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).105D6 | 192,1228 |
(C2×Q8).106D6 = C42.138D6 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).106D6 | 192,1229 |
(C2×Q8).107D6 = C42.140D6 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).107D6 | 192,1231 |
(C2×Q8).108D6 = C42.145D6 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).108D6 | 192,1243 |
(C2×Q8).109D6 = Dic6⋊9Q8 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 192 | | (C2xQ8).109D6 | 192,1281 |
(C2×Q8).110D6 = C42.174D6 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).110D6 | 192,1288 |
(C2×Q8).111D6 = D12⋊9Q8 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).111D6 | 192,1289 |
(C2×Q8).112D6 = C42.178D6 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).112D6 | 192,1292 |
(C2×Q8).113D6 = C42.179D6 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).113D6 | 192,1293 |
(C2×Q8).114D6 = C42.180D6 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | | (C2xQ8).114D6 | 192,1294 |
(C2×Q8).115D6 = D12.30D4 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | 4 | (C2xQ8).115D6 | 192,1325 |
(C2×Q8).116D6 = SD16.D6 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | 8- | (C2xQ8).116D6 | 192,1338 |
(C2×Q8).117D6 = D12.35C23 | φ: D6/C3 → C22 ⊆ Out C2×Q8 | 96 | 8- | (C2xQ8).117D6 | 192,1397 |
(C2×Q8).118D6 = S3×C4.10D4 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 48 | 8- | (C2xQ8).118D6 | 192,309 |
(C2×Q8).119D6 = M4(2).21D6 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 48 | 8+ | (C2xQ8).119D6 | 192,310 |
(C2×Q8).120D6 = Dic3⋊7SD16 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).120D6 | 192,347 |
(C2×Q8).121D6 = C3⋊Q16⋊C4 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).121D6 | 192,348 |
(C2×Q8).122D6 = Dic3⋊4Q16 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).122D6 | 192,349 |
(C2×Q8).123D6 = Q8⋊2Dic6 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).123D6 | 192,350 |
(C2×Q8).124D6 = Q8⋊3Dic6 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).124D6 | 192,352 |
(C2×Q8).125D6 = Q8.3Dic6 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).125D6 | 192,355 |
(C2×Q8).126D6 = Q8.4Dic6 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).126D6 | 192,358 |
(C2×Q8).127D6 = S3×Q8⋊C4 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).127D6 | 192,360 |
(C2×Q8).128D6 = (S3×Q8)⋊C4 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).128D6 | 192,361 |
(C2×Q8).129D6 = Q8⋊7(C4×S3) | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).129D6 | 192,362 |
(C2×Q8).130D6 = C4⋊C4.150D6 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).130D6 | 192,363 |
(C2×Q8).131D6 = Q8⋊3D12 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).131D6 | 192,365 |
(C2×Q8).132D6 = Q8.11D12 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).132D6 | 192,367 |
(C2×Q8).133D6 = D6⋊Q16 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).133D6 | 192,368 |
(C2×Q8).134D6 = Q8⋊4D12 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).134D6 | 192,369 |
(C2×Q8).135D6 = Q8⋊3(C4×S3) | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).135D6 | 192,376 |
(C2×Q8).136D6 = Dic3×SD16 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).136D6 | 192,720 |
(C2×Q8).137D6 = Dic3⋊5SD16 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).137D6 | 192,722 |
(C2×Q8).138D6 = SD16⋊Dic3 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).138D6 | 192,723 |
(C2×Q8).139D6 = (C3×Q8).D4 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).139D6 | 192,725 |
(C2×Q8).140D6 = D6⋊8SD16 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).140D6 | 192,729 |
(C2×Q8).141D6 = D12⋊7D4 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).141D6 | 192,731 |
(C2×Q8).142D6 = Dic3×Q16 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).142D6 | 192,740 |
(C2×Q8).143D6 = Dic3⋊3Q16 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).143D6 | 192,741 |
(C2×Q8).144D6 = Q16⋊Dic3 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).144D6 | 192,743 |
(C2×Q8).145D6 = (Q8×Dic3)⋊C2 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).145D6 | 192,1181 |
(C2×Q8).146D6 = C4⋊C4.187D6 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).146D6 | 192,1183 |
(C2×Q8).147D6 = C6.152- 1+4 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).147D6 | 192,1184 |
(C2×Q8).148D6 = C6.162- 1+4 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).148D6 | 192,1187 |
(C2×Q8).149D6 = C6.172- 1+4 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).149D6 | 192,1188 |
(C2×Q8).150D6 = D12⋊22D4 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).150D6 | 192,1190 |
(C2×Q8).151D6 = Dic6⋊21D4 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).151D6 | 192,1191 |
(C2×Q8).152D6 = Dic6⋊22D4 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).152D6 | 192,1192 |
(C2×Q8).153D6 = C6.1182+ 1+4 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).153D6 | 192,1194 |
(C2×Q8).154D6 = C6.212- 1+4 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).154D6 | 192,1198 |
(C2×Q8).155D6 = C6.232- 1+4 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).155D6 | 192,1200 |
(C2×Q8).156D6 = C6.772- 1+4 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).156D6 | 192,1201 |
(C2×Q8).157D6 = C6.242- 1+4 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).157D6 | 192,1202 |
(C2×Q8).158D6 = C42.233D6 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).158D6 | 192,1227 |
(C2×Q8).159D6 = C42.139D6 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).159D6 | 192,1230 |
(C2×Q8).160D6 = C42.141D6 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).160D6 | 192,1234 |
(C2×Q8).161D6 = Dic6⋊10D4 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).161D6 | 192,1236 |
(C2×Q8).162D6 = C42.234D6 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).162D6 | 192,1239 |
(C2×Q8).163D6 = C42.143D6 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).163D6 | 192,1240 |
(C2×Q8).164D6 = C42.144D6 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).164D6 | 192,1241 |
(C2×Q8).165D6 = Dic6⋊8Q8 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).165D6 | 192,1280 |
(C2×Q8).166D6 = S3×C4⋊Q8 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).166D6 | 192,1282 |
(C2×Q8).167D6 = C42.171D6 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).167D6 | 192,1283 |
(C2×Q8).168D6 = C42.240D6 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).168D6 | 192,1284 |
(C2×Q8).169D6 = D12⋊12D4 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).169D6 | 192,1285 |
(C2×Q8).170D6 = D12⋊8Q8 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).170D6 | 192,1286 |
(C2×Q8).171D6 = C42.241D6 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).171D6 | 192,1287 |
(C2×Q8).172D6 = C42.176D6 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).172D6 | 192,1290 |
(C2×Q8).173D6 = C42.177D6 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).173D6 | 192,1291 |
(C2×Q8).174D6 = C2×D4.D6 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).174D6 | 192,1319 |
(C2×Q8).175D6 = C2×Q8.7D6 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).175D6 | 192,1320 |
(C2×Q8).176D6 = C2×S3×Q16 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).176D6 | 192,1322 |
(C2×Q8).177D6 = C2×Q16⋊S3 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).177D6 | 192,1323 |
(C2×Q8).178D6 = C2×D24⋊C2 | φ: D6/S3 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).178D6 | 192,1324 |
(C2×Q8).179D6 = Q8⋊4Dic6 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).179D6 | 192,579 |
(C2×Q8).180D6 = Q8⋊5Dic6 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).180D6 | 192,580 |
(C2×Q8).181D6 = Q8.5Dic6 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).181D6 | 192,581 |
(C2×Q8).182D6 = C4×Q8⋊2S3 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).182D6 | 192,584 |
(C2×Q8).183D6 = C42.56D6 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).183D6 | 192,585 |
(C2×Q8).184D6 = Q8⋊2D12 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).184D6 | 192,586 |
(C2×Q8).185D6 = Q8.6D12 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).185D6 | 192,587 |
(C2×Q8).186D6 = C4×C3⋊Q16 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).186D6 | 192,588 |
(C2×Q8).187D6 = C42.59D6 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).187D6 | 192,589 |
(C2×Q8).188D6 = C12⋊7Q16 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).188D6 | 192,590 |
(C2×Q8).189D6 = C2×Q8⋊2Dic3 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).189D6 | 192,783 |
(C2×Q8).190D6 = (C6×Q8)⋊6C4 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).190D6 | 192,784 |
(C2×Q8).191D6 = C2×C12.10D4 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).191D6 | 192,785 |
(C2×Q8).192D6 = (C3×Q8)⋊13D4 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).192D6 | 192,786 |
(C2×Q8).193D6 = (C2×C6)⋊8Q16 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).193D6 | 192,787 |
(C2×Q8).194D6 = C4○D4⋊3Dic3 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).194D6 | 192,791 |
(C2×Q8).195D6 = C4○D4⋊4Dic3 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).195D6 | 192,792 |
(C2×Q8).196D6 = (C6×D4).16C4 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 48 | 4 | (C2xQ8).196D6 | 192,796 |
(C2×Q8).197D6 = (C3×D4)⋊14D4 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).197D6 | 192,797 |
(C2×Q8).198D6 = (C3×D4).32D4 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).198D6 | 192,798 |
(C2×Q8).199D6 = Dic6⋊10Q8 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).199D6 | 192,1126 |
(C2×Q8).200D6 = C42.122D6 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).200D6 | 192,1127 |
(C2×Q8).201D6 = C42.232D6 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).201D6 | 192,1137 |
(C2×Q8).202D6 = D12⋊10Q8 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).202D6 | 192,1138 |
(C2×Q8).203D6 = C42.131D6 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).203D6 | 192,1139 |
(C2×Q8).204D6 = C42.132D6 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).204D6 | 192,1140 |
(C2×Q8).205D6 = C42.133D6 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).205D6 | 192,1141 |
(C2×Q8).206D6 = C42.134D6 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).206D6 | 192,1142 |
(C2×Q8).207D6 = C42.135D6 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).207D6 | 192,1143 |
(C2×Q8).208D6 = C42.136D6 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).208D6 | 192,1144 |
(C2×Q8).209D6 = C22×C3⋊Q16 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).209D6 | 192,1368 |
(C2×Q8).210D6 = C2×Dic3⋊Q8 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 192 | | (C2xQ8).210D6 | 192,1369 |
(C2×Q8).211D6 = Q8×C3⋊D4 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).211D6 | 192,1374 |
(C2×Q8).212D6 = C6.442- 1+4 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).212D6 | 192,1375 |
(C2×Q8).213D6 = C6.452- 1+4 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).213D6 | 192,1376 |
(C2×Q8).214D6 = C2×Q8.13D6 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).214D6 | 192,1380 |
(C2×Q8).215D6 = C2×Q8.14D6 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).215D6 | 192,1382 |
(C2×Q8).216D6 = C6.1042- 1+4 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).216D6 | 192,1383 |
(C2×Q8).217D6 = C6.1052- 1+4 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).217D6 | 192,1384 |
(C2×Q8).218D6 = (C2×C12)⋊17D4 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).218D6 | 192,1391 |
(C2×Q8).219D6 = C6.1082- 1+4 | φ: D6/C6 → C2 ⊆ Out C2×Q8 | 96 | | (C2xQ8).219D6 | 192,1392 |
(C2×Q8).220D6 = Q8×Dic6 | φ: trivial image | 192 | | (C2xQ8).220D6 | 192,1125 |
(C2×Q8).221D6 = Q8⋊6Dic6 | φ: trivial image | 192 | | (C2xQ8).221D6 | 192,1128 |
(C2×Q8).222D6 = Q8⋊7Dic6 | φ: trivial image | 192 | | (C2xQ8).222D6 | 192,1129 |
(C2×Q8).223D6 = C4×S3×Q8 | φ: trivial image | 96 | | (C2xQ8).223D6 | 192,1130 |
(C2×Q8).224D6 = C42.125D6 | φ: trivial image | 96 | | (C2xQ8).224D6 | 192,1131 |
(C2×Q8).225D6 = C4×Q8⋊3S3 | φ: trivial image | 96 | | (C2xQ8).225D6 | 192,1132 |
(C2×Q8).226D6 = C42.126D6 | φ: trivial image | 96 | | (C2xQ8).226D6 | 192,1133 |
(C2×Q8).227D6 = Q8×D12 | φ: trivial image | 96 | | (C2xQ8).227D6 | 192,1134 |
(C2×Q8).228D6 = Q8⋊6D12 | φ: trivial image | 96 | | (C2xQ8).228D6 | 192,1135 |
(C2×Q8).229D6 = Q8⋊7D12 | φ: trivial image | 96 | | (C2xQ8).229D6 | 192,1136 |
(C2×Q8).230D6 = C2×Q8×Dic3 | φ: trivial image | 192 | | (C2xQ8).230D6 | 192,1370 |
(C2×Q8).231D6 = C6.422- 1+4 | φ: trivial image | 96 | | (C2xQ8).231D6 | 192,1371 |
(C2×Q8).232D6 = Dic3×C4○D4 | φ: trivial image | 96 | | (C2xQ8).232D6 | 192,1385 |
(C2×Q8).233D6 = C6.1442+ 1+4 | φ: trivial image | 96 | | (C2xQ8).233D6 | 192,1386 |
(C2×Q8).234D6 = C6.1072- 1+4 | φ: trivial image | 96 | | (C2xQ8).234D6 | 192,1390 |
(C2×Q8).235D6 = C6.1482+ 1+4 | φ: trivial image | 96 | | (C2xQ8).235D6 | 192,1393 |
(C2×Q8).236D6 = C2×Q8○D12 | φ: trivial image | 96 | | (C2xQ8).236D6 | 192,1522 |