# Extensions 1→N→G→Q→1 with N=S3×C23 and Q=C22

Direct product G=N×Q with N=S3×C23 and Q=C22
dρLabelID
S3×C2596S3xC2^5192,1542

Semidirect products G=N:Q with N=S3×C23 and Q=C22
extensionφ:Q→Out NdρLabelID
(S3×C23)⋊1C22 = C23⋊D12φ: C22/C1C22 ⊆ Out S3×C23248+(S3xC2^3):1C2^2192,300
(S3×C23)⋊2C22 = 2+ 1+47S3φ: C22/C1C22 ⊆ Out S3×C23248+(S3xC2^3):2C2^2192,803
(S3×C23)⋊3C22 = C2×D6⋊D4φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3):3C2^2192,1046
(S3×C23)⋊4C22 = C234D12φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3):4C2^2192,1052
(S3×C23)⋊5C22 = D4×D12φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3):5C2^2192,1108
(S3×C23)⋊6C22 = C247D6φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3):6C2^2192,1148
(S3×C23)⋊7C22 = C248D6φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3):7C2^2192,1149
(S3×C23)⋊8C22 = C249D6φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3):8C2^2192,1153
(S3×C23)⋊9C22 = C6.372+ 1+4φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3):9C2^2192,1164
(S3×C23)⋊10C22 = D1219D4φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3):10C2^2192,1168
(S3×C23)⋊11C22 = C6.1202+ 1+4φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3):11C2^2192,1212
(S3×C23)⋊12C22 = C4224D6φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3):12C2^2192,1242
(S3×C23)⋊13C22 = D1211D4φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3):13C2^2192,1276
(S3×C23)⋊14C22 = D4×C3⋊D4φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3):14C2^2192,1360
(S3×C23)⋊15C22 = C2412D6φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3):15C2^2192,1363
(S3×C23)⋊16C22 = C2×C244S3φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3):16C2^2192,1399
(S3×C23)⋊17C22 = C2×D46D6φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3):17C2^2192,1516
(S3×C23)⋊18C22 = C2×D4○D12φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3):18C2^2192,1521
(S3×C23)⋊19C22 = S3×2+ 1+4φ: C22/C1C22 ⊆ Out S3×C23248+(S3xC2^3):19C2^2192,1524
(S3×C23)⋊20C22 = S3×C22≀C2φ: C22/C2C2 ⊆ Out S3×C2324(S3xC2^3):20C2^2192,1147
(S3×C23)⋊21C22 = C2×C232D6φ: C22/C2C2 ⊆ Out S3×C2348(S3xC2^3):21C2^2192,1358
(S3×C23)⋊22C22 = C23×D12φ: C22/C2C2 ⊆ Out S3×C2396(S3xC2^3):22C2^2192,1512
(S3×C23)⋊23C22 = C22×S3×D4φ: C22/C2C2 ⊆ Out S3×C2348(S3xC2^3):23C2^2192,1514
(S3×C23)⋊24C22 = C23×C3⋊D4φ: C22/C2C2 ⊆ Out S3×C2396(S3xC2^3):24C2^2192,1529

Non-split extensions G=N.Q with N=S3×C23 and Q=C22
extensionφ:Q→Out NdρLabelID
(S3×C23).1C22 = D6⋊C45C4φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).1C2^2192,228
(S3×C23).2C22 = D6⋊C43C4φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).2C2^2192,229
(S3×C23).3C22 = (C2×C12)⋊5D4φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).3C2^2192,230
(S3×C23).4C22 = C6.C22≀C2φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).4C2^2192,231
(S3×C23).5C22 = (C22×S3)⋊Q8φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).5C2^2192,232
(S3×C23).6C22 = (C2×C4).21D12φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).6C2^2192,233
(S3×C23).7C22 = C6.(C4⋊D4)φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).7C2^2192,234
(S3×C23).8C22 = (C22×C4).37D6φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).8C2^2192,235
(S3×C23).9C22 = (C2×C12).33D4φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).9C2^2192,236
(S3×C23).10C22 = S3×C23⋊C4φ: C22/C1C22 ⊆ Out S3×C23248+(S3xC2^3).10C2^2192,302
(S3×C23).11C22 = (C2×C4)⋊6D12φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).11C2^2192,498
(S3×C23).12C22 = (C2×C42)⋊3S3φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).12C2^2192,499
(S3×C23).13C22 = C24.24D6φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).13C2^2192,516
(S3×C23).14C22 = C24.60D6φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).14C2^2192,517
(S3×C23).15C22 = C24.25D6φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).15C2^2192,518
(S3×C23).16C22 = C233D12φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).16C2^2192,519
(S3×C23).17C22 = C24.27D6φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).17C2^2192,520
(S3×C23).18C22 = (C2×D12)⋊10C4φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).18C2^2192,547
(S3×C23).19C22 = D6⋊C47C4φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).19C2^2192,549
(S3×C23).20C22 = (C2×C4)⋊3D12φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).20C2^2192,550
(S3×C23).21C22 = (C2×C12).289D4φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).21C2^2192,551
(S3×C23).22C22 = (C2×C12).290D4φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).22C2^2192,552
(S3×C23).23C22 = (C2×C12).56D4φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).23C2^2192,553
(S3×C23).24C22 = C24.76D6φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).24C2^2192,772
(S3×C23).25C22 = C24.32D6φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).25C2^2192,782
(S3×C23).26C22 = (C22×Q8)⋊9S3φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).26C2^2192,790
(S3×C23).27C22 = C2×C4⋊D12φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).27C2^2192,1034
(S3×C23).28C22 = C2×C427S3φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).28C2^2192,1035
(S3×C23).29C22 = C2×C423S3φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).29C2^2192,1037
(S3×C23).30C22 = C24.35D6φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).30C2^2192,1045
(S3×C23).31C22 = C24.38D6φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).31C2^2192,1049
(S3×C23).32C22 = C2×C23.11D6φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).32C2^2192,1050
(S3×C23).33C22 = C2×C23.21D6φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).33C2^2192,1051
(S3×C23).34C22 = C2×C4⋊C4⋊S3φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).34C2^2192,1071
(S3×C23).35C22 = C429D6φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).35C2^2192,1080
(S3×C23).36C22 = C4211D6φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).36C2^2192,1084
(S3×C23).37C22 = C4212D6φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).37C2^2192,1086
(S3×C23).38C22 = C4213D6φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).38C2^2192,1104
(S3×C23).39C22 = D1223D4φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).39C2^2192,1109
(S3×C23).40C22 = D45D12φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).40C2^2192,1113
(S3×C23).41C22 = C4218D6φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).41C2^2192,1115
(S3×C23).42C22 = C4219D6φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).42C2^2192,1119
(S3×C23).43C22 = C24.44D6φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).43C2^2192,1150
(S3×C23).44C22 = C24.45D6φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).44C2^2192,1151
(S3×C23).45C22 = S3×C4⋊D4φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).45C2^2192,1163
(S3×C23).46C22 = C6.382+ 1+4φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).46C2^2192,1166
(S3×C23).47C22 = C6.402+ 1+4φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).47C2^2192,1169
(S3×C23).48C22 = D1220D4φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).48C2^2192,1171
(S3×C23).49C22 = C6.422+ 1+4φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).49C2^2192,1172
(S3×C23).50C22 = C6.462+ 1+4φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).50C2^2192,1176
(S3×C23).51C22 = C6.482+ 1+4φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).51C2^2192,1179
(S3×C23).52C22 = D1221D4φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).52C2^2192,1189
(S3×C23).53C22 = C6.512+ 1+4φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).53C2^2192,1193
(S3×C23).54C22 = C6.532+ 1+4φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).54C2^2192,1196
(S3×C23).55C22 = C6.562+ 1+4φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).55C2^2192,1203
(S3×C23).56C22 = S3×C22.D4φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).56C2^2192,1211
(S3×C23).57C22 = C6.1212+ 1+4φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).57C2^2192,1213
(S3×C23).58C22 = C6.612+ 1+4φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).58C2^2192,1216
(S3×C23).59C22 = C6.1222+ 1+4φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).59C2^2192,1217
(S3×C23).60C22 = C6.622+ 1+4φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).60C2^2192,1218
(S3×C23).61C22 = C6.682+ 1+4φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).61C2^2192,1225
(S3×C23).62C22 = S3×C4.4D4φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).62C2^2192,1232
(S3×C23).63C22 = C4220D6φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).63C2^2192,1233
(S3×C23).64C22 = D1210D4φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).64C2^2192,1235
(S3×C23).65C22 = C4222D6φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).65C2^2192,1237
(S3×C23).66C22 = C4223D6φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).66C2^2192,1238
(S3×C23).67C22 = S3×C422C2φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).67C2^2192,1262
(S3×C23).68C22 = C4225D6φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).68C2^2192,1263
(S3×C23).69C22 = C4226D6φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).69C2^2192,1264
(S3×C23).70C22 = C4227D6φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).70C2^2192,1270
(S3×C23).71C22 = S3×C41D4φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).71C2^2192,1273
(S3×C23).72C22 = C4228D6φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).72C2^2192,1274
(S3×C23).73C22 = C4230D6φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).73C2^2192,1279
(S3×C23).74C22 = C2×C23.28D6φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).74C2^2192,1348
(S3×C23).75C22 = C2×C127D4φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).75C2^2192,1349
(S3×C23).76C22 = C2×C23.14D6φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).76C2^2192,1361
(S3×C23).77C22 = C2×C123D4φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).77C2^2192,1362
(S3×C23).78C22 = C2×C12.23D4φ: C22/C1C22 ⊆ Out S3×C2396(S3xC2^3).78C2^2192,1373
(S3×C23).79C22 = C6.1452+ 1+4φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).79C2^2192,1388
(S3×C23).80C22 = C6.1462+ 1+4φ: C22/C1C22 ⊆ Out S3×C2348(S3xC2^3).80C2^2192,1389
(S3×C23).81C22 = C22.58(S3×D4)φ: C22/C2C2 ⊆ Out S3×C2396(S3xC2^3).81C2^2192,223
(S3×C23).82C22 = (C2×C4)⋊9D12φ: C22/C2C2 ⊆ Out S3×C2396(S3xC2^3).82C2^2192,224
(S3×C23).83C22 = D6⋊C42φ: C22/C2C2 ⊆ Out S3×C2396(S3xC2^3).83C2^2192,225
(S3×C23).84C22 = D6⋊(C4⋊C4)φ: C22/C2C2 ⊆ Out S3×C2396(S3xC2^3).84C2^2192,226
(S3×C23).85C22 = D6⋊C4⋊C4φ: C22/C2C2 ⊆ Out S3×C2396(S3xC2^3).85C2^2192,227
(S3×C23).86C22 = C4×D6⋊C4φ: C22/C2C2 ⊆ Out S3×C2396(S3xC2^3).86C2^2192,497
(S3×C23).87C22 = C24.59D6φ: C22/C2C2 ⊆ Out S3×C2348(S3xC2^3).87C2^2192,514
(S3×C23).88C22 = C24.23D6φ: C22/C2C2 ⊆ Out S3×C2396(S3xC2^3).88C2^2192,515
(S3×C23).89C22 = C4⋊(D6⋊C4)φ: C22/C2C2 ⊆ Out S3×C2396(S3xC2^3).89C2^2192,546
(S3×C23).90C22 = D6⋊C46C4φ: C22/C2C2 ⊆ Out S3×C2396(S3xC2^3).90C2^2192,548
(S3×C23).91C22 = C2×C422S3φ: C22/C2C2 ⊆ Out S3×C2396(S3xC2^3).91C2^2192,1031
(S3×C23).92C22 = C2×C4×D12φ: C22/C2C2 ⊆ Out S3×C2396(S3xC2^3).92C2^2192,1032
(S3×C23).93C22 = C2×S3×C22⋊C4φ: C22/C2C2 ⊆ Out S3×C2348(S3xC2^3).93C2^2192,1043
(S3×C23).94C22 = C2×Dic34D4φ: C22/C2C2 ⊆ Out S3×C2396(S3xC2^3).94C2^2192,1044
(S3×C23).95C22 = C2×C23.9D6φ: C22/C2C2 ⊆ Out S3×C2396(S3xC2^3).95C2^2192,1047
(S3×C23).96C22 = C2×Dic3⋊D4φ: C22/C2C2 ⊆ Out S3×C2396(S3xC2^3).96C2^2192,1048
(S3×C23).97C22 = C2×C4⋊C47S3φ: C22/C2C2 ⊆ Out S3×C2396(S3xC2^3).97C2^2192,1061
(S3×C23).98C22 = C2×Dic35D4φ: C22/C2C2 ⊆ Out S3×C2396(S3xC2^3).98C2^2192,1062
(S3×C23).99C22 = C2×D6.D4φ: C22/C2C2 ⊆ Out S3×C2396(S3xC2^3).99C2^2192,1064
(S3×C23).100C22 = C2×C12⋊D4φ: C22/C2C2 ⊆ Out S3×C2396(S3xC2^3).100C2^2192,1065
(S3×C23).101C22 = C2×D6⋊Q8φ: C22/C2C2 ⊆ Out S3×C2396(S3xC2^3).101C2^2192,1067
(S3×C23).102C22 = C2×C4.D12φ: C22/C2C2 ⊆ Out S3×C2396(S3xC2^3).102C2^2192,1068
(S3×C23).103C22 = S3×C42⋊C2φ: C22/C2C2 ⊆ Out S3×C2348(S3xC2^3).103C2^2192,1079
(S3×C23).104C22 = C4210D6φ: C22/C2C2 ⊆ Out S3×C2348(S3xC2^3).104C2^2192,1083
(S3×C23).105C22 = C4×S3×D4φ: C22/C2C2 ⊆ Out S3×C2348(S3xC2^3).105C2^2192,1103
(S3×C23).106C22 = C4214D6φ: C22/C2C2 ⊆ Out S3×C2348(S3xC2^3).106C2^2192,1106
(S3×C23).107C22 = C4⋊C421D6φ: C22/C2C2 ⊆ Out S3×C2348(S3xC2^3).107C2^2192,1165
(S3×C23).108C22 = S3×C22⋊Q8φ: C22/C2C2 ⊆ Out S3×C2348(S3xC2^3).108C2^2192,1185
(S3×C23).109C22 = C4⋊C426D6φ: C22/C2C2 ⊆ Out S3×C2348(S3xC2^3).109C2^2192,1186
(S3×C23).110C22 = C4⋊C428D6φ: C22/C2C2 ⊆ Out S3×C2348(S3xC2^3).110C2^2192,1215
(S3×C23).111C22 = C22×D6⋊C4φ: C22/C2C2 ⊆ Out S3×C2396(S3xC2^3).111C2^2192,1346
(S3×C23).112C22 = C2×C4×C3⋊D4φ: C22/C2C2 ⊆ Out S3×C2396(S3xC2^3).112C2^2192,1347
(S3×C23).113C22 = C2×D63D4φ: C22/C2C2 ⊆ Out S3×C2396(S3xC2^3).113C2^2192,1359
(S3×C23).114C22 = C2×D63Q8φ: C22/C2C2 ⊆ Out S3×C2396(S3xC2^3).114C2^2192,1372
(S3×C23).115C22 = (C2×D4)⋊43D6φ: C22/C2C2 ⊆ Out S3×C2348(S3xC2^3).115C2^2192,1387
(S3×C23).116C22 = C22×C4○D12φ: C22/C2C2 ⊆ Out S3×C2396(S3xC2^3).116C2^2192,1513
(S3×C23).117C22 = C22×D42S3φ: C22/C2C2 ⊆ Out S3×C2396(S3xC2^3).117C2^2192,1515
(S3×C23).118C22 = C22×Q83S3φ: C22/C2C2 ⊆ Out S3×C2396(S3xC2^3).118C2^2192,1518
(S3×C23).119C22 = C2×S3×C4○D4φ: C22/C2C2 ⊆ Out S3×C2348(S3xC2^3).119C2^2192,1520
(S3×C23).120C22 = S3×C2.C42φ: trivial image96(S3xC2^3).120C2^2192,222
(S3×C23).121C22 = S3×C2×C42φ: trivial image96(S3xC2^3).121C2^2192,1030
(S3×C23).122C22 = C2×S3×C4⋊C4φ: trivial image96(S3xC2^3).122C2^2192,1060
(S3×C23).123C22 = S3×C23×C4φ: trivial image96(S3xC2^3).123C2^2192,1511
(S3×C23).124C22 = C22×S3×Q8φ: trivial image96(S3xC2^3).124C2^2192,1517

׿
×
𝔽