Copied to
clipboard

G = C2×D63D4order 192 = 26·3

Direct product of C2 and D63D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D63D4, C24.50D6, D64(C2×D4), C127(C2×D4), (C2×D4)⋊36D6, (C2×C12)⋊12D4, C64(C4⋊D4), (C22×D4)⋊9S3, (C22×S3)⋊12D4, (C6×D4)⋊43C22, (C2×C6).295C24, C4⋊Dic377C22, C22.147(S3×D4), (C22×C4).395D6, C6.142(C22×D4), (C2×C12).542C23, (C23×C6).76C22, C6.D461C22, (C22×C6).419C23, C23.347(C22×S3), C22.308(S3×C23), C22.79(D42S3), (S3×C23).113C22, (C22×S3).239C23, (C22×C12).275C22, (C2×Dic3).152C23, (C22×Dic3).163C22, (D4×C2×C6)⋊4C2, C43(C2×C3⋊D4), C35(C2×C4⋊D4), (S3×C22×C4)⋊6C2, C2.102(C2×S3×D4), (S3×C2×C4)⋊57C22, (C2×C4)⋊13(C3⋊D4), (C2×C4⋊Dic3)⋊45C2, C6.105(C2×C4○D4), (C2×C6).580(C2×D4), C2.69(C2×D42S3), (C2×C3⋊D4)⋊44C22, (C22×C3⋊D4)⋊13C2, C2.15(C22×C3⋊D4), (C2×C6).177(C4○D4), (C2×C6.D4)⋊28C2, (C2×C4).625(C22×S3), C22.110(C2×C3⋊D4), SmallGroup(192,1359)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C2×D63D4
C1C3C6C2×C6C22×S3S3×C23S3×C22×C4 — C2×D63D4
C3C2×C6 — C2×D63D4
C1C23C22×D4

Generators and relations for C2×D63D4
 G = < a,b,c,d,e | a2=b6=c2=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece=b3c, ede=d-1 >

Subgroups: 1096 in 426 conjugacy classes, 135 normal (21 characteristic)
C1, C2 [×3], C2 [×4], C2 [×8], C3, C4 [×4], C4 [×6], C22, C22 [×6], C22 [×36], S3 [×4], C6 [×3], C6 [×4], C6 [×4], C2×C4 [×6], C2×C4 [×20], D4 [×24], C23, C23 [×4], C23 [×22], Dic3 [×6], C12 [×4], D6 [×4], D6 [×12], C2×C6, C2×C6 [×6], C2×C6 [×20], C22⋊C4 [×8], C4⋊C4 [×4], C22×C4, C22×C4 [×11], C2×D4 [×4], C2×D4 [×20], C24 [×2], C24, C4×S3 [×8], C2×Dic3 [×6], C2×Dic3 [×6], C3⋊D4 [×16], C2×C12 [×6], C3×D4 [×8], C22×S3 [×6], C22×S3 [×4], C22×C6, C22×C6 [×4], C22×C6 [×12], C2×C22⋊C4 [×2], C2×C4⋊C4, C4⋊D4 [×8], C23×C4, C22×D4, C22×D4 [×2], C4⋊Dic3 [×4], C6.D4 [×8], S3×C2×C4 [×4], S3×C2×C4 [×4], C22×Dic3, C22×Dic3 [×2], C2×C3⋊D4 [×8], C2×C3⋊D4 [×8], C22×C12, C6×D4 [×4], C6×D4 [×4], S3×C23, C23×C6 [×2], C2×C4⋊D4, C2×C4⋊Dic3, D63D4 [×8], C2×C6.D4 [×2], S3×C22×C4, C22×C3⋊D4 [×2], D4×C2×C6, C2×D63D4
Quotients: C1, C2 [×15], C22 [×35], S3, D4 [×8], C23 [×15], D6 [×7], C2×D4 [×12], C4○D4 [×2], C24, C3⋊D4 [×4], C22×S3 [×7], C4⋊D4 [×4], C22×D4 [×2], C2×C4○D4, S3×D4 [×2], D42S3 [×2], C2×C3⋊D4 [×6], S3×C23, C2×C4⋊D4, D63D4 [×4], C2×S3×D4, C2×D42S3, C22×C3⋊D4, C2×D63D4

Smallest permutation representation of C2×D63D4
On 96 points
Generators in S96
(1 64)(2 65)(3 66)(4 61)(5 62)(6 63)(7 47)(8 48)(9 43)(10 44)(11 45)(12 46)(13 57)(14 58)(15 59)(16 60)(17 55)(18 56)(19 77)(20 78)(21 73)(22 74)(23 75)(24 76)(25 69)(26 70)(27 71)(28 72)(29 67)(30 68)(31 89)(32 90)(33 85)(34 86)(35 87)(36 88)(37 81)(38 82)(39 83)(40 84)(41 79)(42 80)(49 93)(50 94)(51 95)(52 96)(53 91)(54 92)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 63)(2 62)(3 61)(4 66)(5 65)(6 64)(7 45)(8 44)(9 43)(10 48)(11 47)(12 46)(13 56)(14 55)(15 60)(16 59)(17 58)(18 57)(19 77)(20 76)(21 75)(22 74)(23 73)(24 78)(25 71)(26 70)(27 69)(28 68)(29 67)(30 72)(31 86)(32 85)(33 90)(34 89)(35 88)(36 87)(37 80)(38 79)(39 84)(40 83)(41 82)(42 81)(49 95)(50 94)(51 93)(52 92)(53 91)(54 96)
(1 40 16 36)(2 41 17 31)(3 42 18 32)(4 37 13 33)(5 38 14 34)(6 39 15 35)(7 75 95 71)(8 76 96 72)(9 77 91 67)(10 78 92 68)(11 73 93 69)(12 74 94 70)(19 53 29 43)(20 54 30 44)(21 49 25 45)(22 50 26 46)(23 51 27 47)(24 52 28 48)(55 89 65 79)(56 90 66 80)(57 85 61 81)(58 86 62 82)(59 87 63 83)(60 88 64 84)
(1 48)(2 43)(3 44)(4 45)(5 46)(6 47)(7 63)(8 64)(9 65)(10 66)(11 61)(12 62)(13 49)(14 50)(15 51)(16 52)(17 53)(18 54)(19 31)(20 32)(21 33)(22 34)(23 35)(24 36)(25 37)(26 38)(27 39)(28 40)(29 41)(30 42)(55 91)(56 92)(57 93)(58 94)(59 95)(60 96)(67 79)(68 80)(69 81)(70 82)(71 83)(72 84)(73 85)(74 86)(75 87)(76 88)(77 89)(78 90)

G:=sub<Sym(96)| (1,64)(2,65)(3,66)(4,61)(5,62)(6,63)(7,47)(8,48)(9,43)(10,44)(11,45)(12,46)(13,57)(14,58)(15,59)(16,60)(17,55)(18,56)(19,77)(20,78)(21,73)(22,74)(23,75)(24,76)(25,69)(26,70)(27,71)(28,72)(29,67)(30,68)(31,89)(32,90)(33,85)(34,86)(35,87)(36,88)(37,81)(38,82)(39,83)(40,84)(41,79)(42,80)(49,93)(50,94)(51,95)(52,96)(53,91)(54,92), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,63)(2,62)(3,61)(4,66)(5,65)(6,64)(7,45)(8,44)(9,43)(10,48)(11,47)(12,46)(13,56)(14,55)(15,60)(16,59)(17,58)(18,57)(19,77)(20,76)(21,75)(22,74)(23,73)(24,78)(25,71)(26,70)(27,69)(28,68)(29,67)(30,72)(31,86)(32,85)(33,90)(34,89)(35,88)(36,87)(37,80)(38,79)(39,84)(40,83)(41,82)(42,81)(49,95)(50,94)(51,93)(52,92)(53,91)(54,96), (1,40,16,36)(2,41,17,31)(3,42,18,32)(4,37,13,33)(5,38,14,34)(6,39,15,35)(7,75,95,71)(8,76,96,72)(9,77,91,67)(10,78,92,68)(11,73,93,69)(12,74,94,70)(19,53,29,43)(20,54,30,44)(21,49,25,45)(22,50,26,46)(23,51,27,47)(24,52,28,48)(55,89,65,79)(56,90,66,80)(57,85,61,81)(58,86,62,82)(59,87,63,83)(60,88,64,84), (1,48)(2,43)(3,44)(4,45)(5,46)(6,47)(7,63)(8,64)(9,65)(10,66)(11,61)(12,62)(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,31)(20,32)(21,33)(22,34)(23,35)(24,36)(25,37)(26,38)(27,39)(28,40)(29,41)(30,42)(55,91)(56,92)(57,93)(58,94)(59,95)(60,96)(67,79)(68,80)(69,81)(70,82)(71,83)(72,84)(73,85)(74,86)(75,87)(76,88)(77,89)(78,90)>;

G:=Group( (1,64)(2,65)(3,66)(4,61)(5,62)(6,63)(7,47)(8,48)(9,43)(10,44)(11,45)(12,46)(13,57)(14,58)(15,59)(16,60)(17,55)(18,56)(19,77)(20,78)(21,73)(22,74)(23,75)(24,76)(25,69)(26,70)(27,71)(28,72)(29,67)(30,68)(31,89)(32,90)(33,85)(34,86)(35,87)(36,88)(37,81)(38,82)(39,83)(40,84)(41,79)(42,80)(49,93)(50,94)(51,95)(52,96)(53,91)(54,92), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,63)(2,62)(3,61)(4,66)(5,65)(6,64)(7,45)(8,44)(9,43)(10,48)(11,47)(12,46)(13,56)(14,55)(15,60)(16,59)(17,58)(18,57)(19,77)(20,76)(21,75)(22,74)(23,73)(24,78)(25,71)(26,70)(27,69)(28,68)(29,67)(30,72)(31,86)(32,85)(33,90)(34,89)(35,88)(36,87)(37,80)(38,79)(39,84)(40,83)(41,82)(42,81)(49,95)(50,94)(51,93)(52,92)(53,91)(54,96), (1,40,16,36)(2,41,17,31)(3,42,18,32)(4,37,13,33)(5,38,14,34)(6,39,15,35)(7,75,95,71)(8,76,96,72)(9,77,91,67)(10,78,92,68)(11,73,93,69)(12,74,94,70)(19,53,29,43)(20,54,30,44)(21,49,25,45)(22,50,26,46)(23,51,27,47)(24,52,28,48)(55,89,65,79)(56,90,66,80)(57,85,61,81)(58,86,62,82)(59,87,63,83)(60,88,64,84), (1,48)(2,43)(3,44)(4,45)(5,46)(6,47)(7,63)(8,64)(9,65)(10,66)(11,61)(12,62)(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,31)(20,32)(21,33)(22,34)(23,35)(24,36)(25,37)(26,38)(27,39)(28,40)(29,41)(30,42)(55,91)(56,92)(57,93)(58,94)(59,95)(60,96)(67,79)(68,80)(69,81)(70,82)(71,83)(72,84)(73,85)(74,86)(75,87)(76,88)(77,89)(78,90) );

G=PermutationGroup([(1,64),(2,65),(3,66),(4,61),(5,62),(6,63),(7,47),(8,48),(9,43),(10,44),(11,45),(12,46),(13,57),(14,58),(15,59),(16,60),(17,55),(18,56),(19,77),(20,78),(21,73),(22,74),(23,75),(24,76),(25,69),(26,70),(27,71),(28,72),(29,67),(30,68),(31,89),(32,90),(33,85),(34,86),(35,87),(36,88),(37,81),(38,82),(39,83),(40,84),(41,79),(42,80),(49,93),(50,94),(51,95),(52,96),(53,91),(54,92)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,63),(2,62),(3,61),(4,66),(5,65),(6,64),(7,45),(8,44),(9,43),(10,48),(11,47),(12,46),(13,56),(14,55),(15,60),(16,59),(17,58),(18,57),(19,77),(20,76),(21,75),(22,74),(23,73),(24,78),(25,71),(26,70),(27,69),(28,68),(29,67),(30,72),(31,86),(32,85),(33,90),(34,89),(35,88),(36,87),(37,80),(38,79),(39,84),(40,83),(41,82),(42,81),(49,95),(50,94),(51,93),(52,92),(53,91),(54,96)], [(1,40,16,36),(2,41,17,31),(3,42,18,32),(4,37,13,33),(5,38,14,34),(6,39,15,35),(7,75,95,71),(8,76,96,72),(9,77,91,67),(10,78,92,68),(11,73,93,69),(12,74,94,70),(19,53,29,43),(20,54,30,44),(21,49,25,45),(22,50,26,46),(23,51,27,47),(24,52,28,48),(55,89,65,79),(56,90,66,80),(57,85,61,81),(58,86,62,82),(59,87,63,83),(60,88,64,84)], [(1,48),(2,43),(3,44),(4,45),(5,46),(6,47),(7,63),(8,64),(9,65),(10,66),(11,61),(12,62),(13,49),(14,50),(15,51),(16,52),(17,53),(18,54),(19,31),(20,32),(21,33),(22,34),(23,35),(24,36),(25,37),(26,38),(27,39),(28,40),(29,41),(30,42),(55,91),(56,92),(57,93),(58,94),(59,95),(60,96),(67,79),(68,80),(69,81),(70,82),(71,83),(72,84),(73,85),(74,86),(75,87),(76,88),(77,89),(78,90)])

48 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M2N2O 3 4A4B4C4D4E4F4G4H4I4J4K4L6A···6G6H···6O12A12B12C12D
order12···22222222234444444444446···66···612121212
size11···144446666222226666121212122···24···44444

48 irreducible representations

dim11111112222222244
type++++++++++++++-
imageC1C2C2C2C2C2C2S3D4D4D6D6D6C4○D4C3⋊D4S3×D4D42S3
kernelC2×D63D4C2×C4⋊Dic3D63D4C2×C6.D4S3×C22×C4C22×C3⋊D4D4×C2×C6C22×D4C2×C12C22×S3C22×C4C2×D4C24C2×C6C2×C4C22C22
# reps11821211441424822

Matrix representation of C2×D63D4 in GL5(𝔽13)

120000
01000
00100
000120
000012
,
10000
012000
001200
000112
00010
,
10000
012000
00100
000120
000121
,
120000
08000
00500
000120
000012
,
120000
00500
08000
000114
00092

G:=sub<GL(5,GF(13))| [12,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,1,1,0,0,0,12,0],[1,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,12,12,0,0,0,0,1],[12,0,0,0,0,0,8,0,0,0,0,0,5,0,0,0,0,0,12,0,0,0,0,0,12],[12,0,0,0,0,0,0,8,0,0,0,5,0,0,0,0,0,0,11,9,0,0,0,4,2] >;

C2×D63D4 in GAP, Magma, Sage, TeX

C_2\times D_6\rtimes_3D_4
% in TeX

G:=Group("C2xD6:3D4");
// GroupNames label

G:=SmallGroup(192,1359);
// by ID

G=gap.SmallGroup(192,1359);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,184,675,297,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^6=c^2=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^3*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽