Copied to
clipboard

G = C232Dic9order 288 = 25·32

The semidirect product of C23 and Dic9 acting via Dic9/C9=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C232Dic9, C23.7D18, (C2×C4)⋊Dic9, (C2×C36)⋊1C4, C92(C23⋊C4), (C2×D4).3D9, (C2×C18).2D4, (C22×C18)⋊2C4, (D4×C18).6C2, (C6×D4).18S3, (C2×C12).1Dic3, (C22×C6).36D6, C18.D42C2, C22.2(C9⋊D4), C3.(C23.7D6), C22.3(C2×Dic9), (C22×C6).7Dic3, C18.15(C22⋊C4), (C22×C18).6C22, C6.16(C6.D4), C2.5(C18.D4), (C2×C18).30(C2×C4), (C2×C6).2(C3⋊D4), (C2×C6).34(C2×Dic3), SmallGroup(288,41)

Series: Derived Chief Lower central Upper central

C1C2×C18 — C232Dic9
C1C3C9C18C2×C18C22×C18C18.D4 — C232Dic9
C9C18C2×C18 — C232Dic9
C1C2C23C2×D4

Generators and relations for C232Dic9
 G = < a,b,c,d,e | a2=b2=c2=d18=1, e2=d9, ab=ba, dad-1=ac=ca, eae-1=abc, ebe-1=bc=cb, bd=db, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 300 in 78 conjugacy classes, 30 normal (22 characteristic)
C1, C2, C2 [×4], C3, C4 [×3], C22, C22 [×2], C22 [×3], C6, C6 [×4], C2×C4, C2×C4 [×2], D4 [×2], C23 [×2], C9, Dic3 [×2], C12, C2×C6, C2×C6 [×2], C2×C6 [×3], C22⋊C4 [×2], C2×D4, C18, C18 [×4], C2×Dic3 [×2], C2×C12, C3×D4 [×2], C22×C6 [×2], C23⋊C4, Dic9 [×2], C36, C2×C18, C2×C18 [×2], C2×C18 [×3], C6.D4 [×2], C6×D4, C2×Dic9 [×2], C2×C36, D4×C9 [×2], C22×C18 [×2], C23.7D6, C18.D4 [×2], D4×C18, C232Dic9
Quotients: C1, C2 [×3], C4 [×2], C22, S3, C2×C4, D4 [×2], Dic3 [×2], D6, C22⋊C4, D9, C2×Dic3, C3⋊D4 [×2], C23⋊C4, Dic9 [×2], D18, C6.D4, C2×Dic9, C9⋊D4 [×2], C23.7D6, C18.D4, C232Dic9

Smallest permutation representation of C232Dic9
On 72 points
Generators in S72
(1 51)(2 43)(3 53)(4 45)(5 37)(6 47)(7 39)(8 49)(9 41)(10 38)(11 48)(12 40)(13 50)(14 42)(15 52)(16 44)(17 54)(18 46)(19 64)(20 56)(21 66)(22 58)(23 68)(24 60)(25 70)(26 62)(27 72)(28 55)(29 65)(30 57)(31 67)(32 59)(33 69)(34 61)(35 71)(36 63)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 25)(8 26)(9 27)(10 33)(11 34)(12 35)(13 36)(14 28)(15 29)(16 30)(17 31)(18 32)(37 68)(38 69)(39 70)(40 71)(41 72)(42 55)(43 56)(44 57)(45 58)(46 59)(47 60)(48 61)(49 62)(50 63)(51 64)(52 65)(53 66)(54 67)
(1 14)(2 15)(3 16)(4 17)(5 18)(6 10)(7 11)(8 12)(9 13)(19 28)(20 29)(21 30)(22 31)(23 32)(24 33)(25 34)(26 35)(27 36)(37 46)(38 47)(39 48)(40 49)(41 50)(42 51)(43 52)(44 53)(45 54)(55 64)(56 65)(57 66)(58 67)(59 68)(60 69)(61 70)(62 71)(63 72)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(2 9)(3 8)(4 7)(5 6)(10 18)(11 17)(12 16)(13 15)(19 28)(20 36)(21 35)(22 34)(23 33)(24 32)(25 31)(26 30)(27 29)(37 60 46 69)(38 59 47 68)(39 58 48 67)(40 57 49 66)(41 56 50 65)(42 55 51 64)(43 72 52 63)(44 71 53 62)(45 70 54 61)

G:=sub<Sym(72)| (1,51)(2,43)(3,53)(4,45)(5,37)(6,47)(7,39)(8,49)(9,41)(10,38)(11,48)(12,40)(13,50)(14,42)(15,52)(16,44)(17,54)(18,46)(19,64)(20,56)(21,66)(22,58)(23,68)(24,60)(25,70)(26,62)(27,72)(28,55)(29,65)(30,57)(31,67)(32,59)(33,69)(34,61)(35,71)(36,63), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,25)(8,26)(9,27)(10,33)(11,34)(12,35)(13,36)(14,28)(15,29)(16,30)(17,31)(18,32)(37,68)(38,69)(39,70)(40,71)(41,72)(42,55)(43,56)(44,57)(45,58)(46,59)(47,60)(48,61)(49,62)(50,63)(51,64)(52,65)(53,66)(54,67), (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (2,9)(3,8)(4,7)(5,6)(10,18)(11,17)(12,16)(13,15)(19,28)(20,36)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(37,60,46,69)(38,59,47,68)(39,58,48,67)(40,57,49,66)(41,56,50,65)(42,55,51,64)(43,72,52,63)(44,71,53,62)(45,70,54,61)>;

G:=Group( (1,51)(2,43)(3,53)(4,45)(5,37)(6,47)(7,39)(8,49)(9,41)(10,38)(11,48)(12,40)(13,50)(14,42)(15,52)(16,44)(17,54)(18,46)(19,64)(20,56)(21,66)(22,58)(23,68)(24,60)(25,70)(26,62)(27,72)(28,55)(29,65)(30,57)(31,67)(32,59)(33,69)(34,61)(35,71)(36,63), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,25)(8,26)(9,27)(10,33)(11,34)(12,35)(13,36)(14,28)(15,29)(16,30)(17,31)(18,32)(37,68)(38,69)(39,70)(40,71)(41,72)(42,55)(43,56)(44,57)(45,58)(46,59)(47,60)(48,61)(49,62)(50,63)(51,64)(52,65)(53,66)(54,67), (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (2,9)(3,8)(4,7)(5,6)(10,18)(11,17)(12,16)(13,15)(19,28)(20,36)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(37,60,46,69)(38,59,47,68)(39,58,48,67)(40,57,49,66)(41,56,50,65)(42,55,51,64)(43,72,52,63)(44,71,53,62)(45,70,54,61) );

G=PermutationGroup([(1,51),(2,43),(3,53),(4,45),(5,37),(6,47),(7,39),(8,49),(9,41),(10,38),(11,48),(12,40),(13,50),(14,42),(15,52),(16,44),(17,54),(18,46),(19,64),(20,56),(21,66),(22,58),(23,68),(24,60),(25,70),(26,62),(27,72),(28,55),(29,65),(30,57),(31,67),(32,59),(33,69),(34,61),(35,71),(36,63)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,25),(8,26),(9,27),(10,33),(11,34),(12,35),(13,36),(14,28),(15,29),(16,30),(17,31),(18,32),(37,68),(38,69),(39,70),(40,71),(41,72),(42,55),(43,56),(44,57),(45,58),(46,59),(47,60),(48,61),(49,62),(50,63),(51,64),(52,65),(53,66),(54,67)], [(1,14),(2,15),(3,16),(4,17),(5,18),(6,10),(7,11),(8,12),(9,13),(19,28),(20,29),(21,30),(22,31),(23,32),(24,33),(25,34),(26,35),(27,36),(37,46),(38,47),(39,48),(40,49),(41,50),(42,51),(43,52),(44,53),(45,54),(55,64),(56,65),(57,66),(58,67),(59,68),(60,69),(61,70),(62,71),(63,72)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(2,9),(3,8),(4,7),(5,6),(10,18),(11,17),(12,16),(13,15),(19,28),(20,36),(21,35),(22,34),(23,33),(24,32),(25,31),(26,30),(27,29),(37,60,46,69),(38,59,47,68),(39,58,48,67),(40,57,49,66),(41,56,50,65),(42,55,51,64),(43,72,52,63),(44,71,53,62),(45,70,54,61)])

51 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E6A6B6C6D6E6F6G9A9B9C12A12B18A···18I18J···18U36A···36F
order1222223444446666666999121218···1818···1836···36
size11222424363636362224444222442···24···44···4

51 irreducible representations

dim1111122222222222444
type+++++--++--++
imageC1C2C2C4C4S3D4Dic3Dic3D6D9C3⋊D4Dic9Dic9D18C9⋊D4C23⋊C4C23.7D6C232Dic9
kernelC232Dic9C18.D4D4×C18C2×C36C22×C18C6×D4C2×C18C2×C12C22×C6C22×C6C2×D4C2×C6C2×C4C23C23C22C9C3C1
# reps12122121113433312126

Matrix representation of C232Dic9 in GL4(𝔽37) generated by

360932
036514
0010
0001
,
71400
233000
00714
002330
,
36000
03600
00360
00036
,
26600
312000
13241131
1326617
,
62600
203100
5182426
1332213
G:=sub<GL(4,GF(37))| [36,0,0,0,0,36,0,0,9,5,1,0,32,14,0,1],[7,23,0,0,14,30,0,0,0,0,7,23,0,0,14,30],[36,0,0,0,0,36,0,0,0,0,36,0,0,0,0,36],[26,31,13,13,6,20,24,26,0,0,11,6,0,0,31,17],[6,20,5,13,26,31,18,32,0,0,24,2,0,0,26,13] >;

C232Dic9 in GAP, Magma, Sage, TeX

C_2^3\rtimes_2{\rm Dic}_9
% in TeX

G:=Group("C2^3:2Dic9");
// GroupNames label

G:=SmallGroup(288,41);
// by ID

G=gap.SmallGroup(288,41);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,28,141,219,675,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^18=1,e^2=d^9,a*b=b*a,d*a*d^-1=a*c=c*a,e*a*e^-1=a*b*c,e*b*e^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽