direct product, metabelian, supersoluble, monomial
Aliases: C2×C12.26D6, C62.281C23, (C3×Q8)⋊19D6, (C6×Q8)⋊10S3, C6⋊3(Q8⋊3S3), (C2×C12).171D6, C6.62(S3×C23), (C3×C6).61C24, C12⋊S3⋊27C22, C12.113(C22×S3), (C3×C12).132C23, (C6×C12).170C22, C3⋊Dic3.54C23, (Q8×C32)⋊22C22, Q8⋊6(C2×C3⋊S3), (Q8×C3×C6)⋊13C2, (C2×Q8)⋊8(C3⋊S3), C3⋊4(C2×Q8⋊3S3), C32⋊18(C2×C4○D4), (C3×C6)⋊12(C4○D4), (C4×C3⋊S3)⋊16C22, (C2×C12⋊S3)⋊21C2, C4.23(C22×C3⋊S3), C2.10(C23×C3⋊S3), (C2×C3⋊S3).53C23, (C2×C6).289(C22×S3), C22.32(C22×C3⋊S3), (C22×C3⋊S3).108C22, (C2×C3⋊Dic3).188C22, (C2×C4×C3⋊S3)⋊9C2, (C2×C4).62(C2×C3⋊S3), SmallGroup(288,1011)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — C3×C6 — C2×C3⋊S3 — C22×C3⋊S3 — C2×C4×C3⋊S3 — C2×C12.26D6 |
Subgroups: 1764 in 492 conjugacy classes, 165 normal (10 characteristic)
C1, C2, C2 [×2], C2 [×6], C3 [×4], C4 [×6], C4 [×2], C22, C22 [×12], S3 [×24], C6 [×12], C2×C4 [×3], C2×C4 [×13], D4 [×12], Q8 [×4], C23 [×3], C32, Dic3 [×8], C12 [×24], D6 [×48], C2×C6 [×4], C22×C4 [×3], C2×D4 [×3], C2×Q8, C4○D4 [×8], C3⋊S3 [×6], C3×C6, C3×C6 [×2], C4×S3 [×48], D12 [×48], C2×Dic3 [×4], C2×C12 [×12], C3×Q8 [×16], C22×S3 [×12], C2×C4○D4, C3⋊Dic3 [×2], C3×C12 [×6], C2×C3⋊S3 [×6], C2×C3⋊S3 [×6], C62, S3×C2×C4 [×12], C2×D12 [×12], Q8⋊3S3 [×32], C6×Q8 [×4], C4×C3⋊S3 [×12], C12⋊S3 [×12], C2×C3⋊Dic3, C6×C12 [×3], Q8×C32 [×4], C22×C3⋊S3 [×3], C2×Q8⋊3S3 [×4], C2×C4×C3⋊S3 [×3], C2×C12⋊S3 [×3], C12.26D6 [×8], Q8×C3×C6, C2×C12.26D6
Quotients:
C1, C2 [×15], C22 [×35], S3 [×4], C23 [×15], D6 [×28], C4○D4 [×2], C24, C3⋊S3, C22×S3 [×28], C2×C4○D4, C2×C3⋊S3 [×7], Q8⋊3S3 [×8], S3×C23 [×4], C22×C3⋊S3 [×7], C2×Q8⋊3S3 [×4], C12.26D6 [×2], C23×C3⋊S3, C2×C12.26D6
Generators and relations
G = < a,b,c,d | a2=b12=1, c6=d2=b6, ab=ba, ac=ca, ad=da, cbc-1=b7, dbd-1=b5, dcd-1=c5 >
(1 66)(2 67)(3 68)(4 69)(5 70)(6 71)(7 72)(8 61)(9 62)(10 63)(11 64)(12 65)(13 47)(14 48)(15 37)(16 38)(17 39)(18 40)(19 41)(20 42)(21 43)(22 44)(23 45)(24 46)(25 96)(26 85)(27 86)(28 87)(29 88)(30 89)(31 90)(32 91)(33 92)(34 93)(35 94)(36 95)(49 111)(50 112)(51 113)(52 114)(53 115)(54 116)(55 117)(56 118)(57 119)(58 120)(59 109)(60 110)(73 137)(74 138)(75 139)(76 140)(77 141)(78 142)(79 143)(80 144)(81 133)(82 134)(83 135)(84 136)(97 127)(98 128)(99 129)(100 130)(101 131)(102 132)(103 121)(104 122)(105 123)(106 124)(107 125)(108 126)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 95 77 116 123 42 7 89 83 110 129 48)(2 90 78 111 124 37 8 96 84 117 130 43)(3 85 79 118 125 44 9 91 73 112 131 38)(4 92 80 113 126 39 10 86 74 119 132 45)(5 87 81 120 127 46 11 93 75 114 121 40)(6 94 82 115 128 41 12 88 76 109 122 47)(13 71 35 134 53 98 19 65 29 140 59 104)(14 66 36 141 54 105 20 72 30 135 60 99)(15 61 25 136 55 100 21 67 31 142 49 106)(16 68 26 143 56 107 22 62 32 137 50 101)(17 63 27 138 57 102 23 69 33 144 51 108)(18 70 28 133 58 97 24 64 34 139 52 103)
(1 17 7 23)(2 22 8 16)(3 15 9 21)(4 20 10 14)(5 13 11 19)(6 18 12 24)(25 125 31 131)(26 130 32 124)(27 123 33 129)(28 128 34 122)(29 121 35 127)(30 126 36 132)(37 62 43 68)(38 67 44 61)(39 72 45 66)(40 65 46 71)(41 70 47 64)(42 63 48 69)(49 73 55 79)(50 78 56 84)(51 83 57 77)(52 76 58 82)(53 81 59 75)(54 74 60 80)(85 100 91 106)(86 105 92 99)(87 98 93 104)(88 103 94 97)(89 108 95 102)(90 101 96 107)(109 139 115 133)(110 144 116 138)(111 137 117 143)(112 142 118 136)(113 135 119 141)(114 140 120 134)
G:=sub<Sym(144)| (1,66)(2,67)(3,68)(4,69)(5,70)(6,71)(7,72)(8,61)(9,62)(10,63)(11,64)(12,65)(13,47)(14,48)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44)(23,45)(24,46)(25,96)(26,85)(27,86)(28,87)(29,88)(30,89)(31,90)(32,91)(33,92)(34,93)(35,94)(36,95)(49,111)(50,112)(51,113)(52,114)(53,115)(54,116)(55,117)(56,118)(57,119)(58,120)(59,109)(60,110)(73,137)(74,138)(75,139)(76,140)(77,141)(78,142)(79,143)(80,144)(81,133)(82,134)(83,135)(84,136)(97,127)(98,128)(99,129)(100,130)(101,131)(102,132)(103,121)(104,122)(105,123)(106,124)(107,125)(108,126), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,95,77,116,123,42,7,89,83,110,129,48)(2,90,78,111,124,37,8,96,84,117,130,43)(3,85,79,118,125,44,9,91,73,112,131,38)(4,92,80,113,126,39,10,86,74,119,132,45)(5,87,81,120,127,46,11,93,75,114,121,40)(6,94,82,115,128,41,12,88,76,109,122,47)(13,71,35,134,53,98,19,65,29,140,59,104)(14,66,36,141,54,105,20,72,30,135,60,99)(15,61,25,136,55,100,21,67,31,142,49,106)(16,68,26,143,56,107,22,62,32,137,50,101)(17,63,27,138,57,102,23,69,33,144,51,108)(18,70,28,133,58,97,24,64,34,139,52,103), (1,17,7,23)(2,22,8,16)(3,15,9,21)(4,20,10,14)(5,13,11,19)(6,18,12,24)(25,125,31,131)(26,130,32,124)(27,123,33,129)(28,128,34,122)(29,121,35,127)(30,126,36,132)(37,62,43,68)(38,67,44,61)(39,72,45,66)(40,65,46,71)(41,70,47,64)(42,63,48,69)(49,73,55,79)(50,78,56,84)(51,83,57,77)(52,76,58,82)(53,81,59,75)(54,74,60,80)(85,100,91,106)(86,105,92,99)(87,98,93,104)(88,103,94,97)(89,108,95,102)(90,101,96,107)(109,139,115,133)(110,144,116,138)(111,137,117,143)(112,142,118,136)(113,135,119,141)(114,140,120,134)>;
G:=Group( (1,66)(2,67)(3,68)(4,69)(5,70)(6,71)(7,72)(8,61)(9,62)(10,63)(11,64)(12,65)(13,47)(14,48)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44)(23,45)(24,46)(25,96)(26,85)(27,86)(28,87)(29,88)(30,89)(31,90)(32,91)(33,92)(34,93)(35,94)(36,95)(49,111)(50,112)(51,113)(52,114)(53,115)(54,116)(55,117)(56,118)(57,119)(58,120)(59,109)(60,110)(73,137)(74,138)(75,139)(76,140)(77,141)(78,142)(79,143)(80,144)(81,133)(82,134)(83,135)(84,136)(97,127)(98,128)(99,129)(100,130)(101,131)(102,132)(103,121)(104,122)(105,123)(106,124)(107,125)(108,126), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,95,77,116,123,42,7,89,83,110,129,48)(2,90,78,111,124,37,8,96,84,117,130,43)(3,85,79,118,125,44,9,91,73,112,131,38)(4,92,80,113,126,39,10,86,74,119,132,45)(5,87,81,120,127,46,11,93,75,114,121,40)(6,94,82,115,128,41,12,88,76,109,122,47)(13,71,35,134,53,98,19,65,29,140,59,104)(14,66,36,141,54,105,20,72,30,135,60,99)(15,61,25,136,55,100,21,67,31,142,49,106)(16,68,26,143,56,107,22,62,32,137,50,101)(17,63,27,138,57,102,23,69,33,144,51,108)(18,70,28,133,58,97,24,64,34,139,52,103), (1,17,7,23)(2,22,8,16)(3,15,9,21)(4,20,10,14)(5,13,11,19)(6,18,12,24)(25,125,31,131)(26,130,32,124)(27,123,33,129)(28,128,34,122)(29,121,35,127)(30,126,36,132)(37,62,43,68)(38,67,44,61)(39,72,45,66)(40,65,46,71)(41,70,47,64)(42,63,48,69)(49,73,55,79)(50,78,56,84)(51,83,57,77)(52,76,58,82)(53,81,59,75)(54,74,60,80)(85,100,91,106)(86,105,92,99)(87,98,93,104)(88,103,94,97)(89,108,95,102)(90,101,96,107)(109,139,115,133)(110,144,116,138)(111,137,117,143)(112,142,118,136)(113,135,119,141)(114,140,120,134) );
G=PermutationGroup([(1,66),(2,67),(3,68),(4,69),(5,70),(6,71),(7,72),(8,61),(9,62),(10,63),(11,64),(12,65),(13,47),(14,48),(15,37),(16,38),(17,39),(18,40),(19,41),(20,42),(21,43),(22,44),(23,45),(24,46),(25,96),(26,85),(27,86),(28,87),(29,88),(30,89),(31,90),(32,91),(33,92),(34,93),(35,94),(36,95),(49,111),(50,112),(51,113),(52,114),(53,115),(54,116),(55,117),(56,118),(57,119),(58,120),(59,109),(60,110),(73,137),(74,138),(75,139),(76,140),(77,141),(78,142),(79,143),(80,144),(81,133),(82,134),(83,135),(84,136),(97,127),(98,128),(99,129),(100,130),(101,131),(102,132),(103,121),(104,122),(105,123),(106,124),(107,125),(108,126)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,95,77,116,123,42,7,89,83,110,129,48),(2,90,78,111,124,37,8,96,84,117,130,43),(3,85,79,118,125,44,9,91,73,112,131,38),(4,92,80,113,126,39,10,86,74,119,132,45),(5,87,81,120,127,46,11,93,75,114,121,40),(6,94,82,115,128,41,12,88,76,109,122,47),(13,71,35,134,53,98,19,65,29,140,59,104),(14,66,36,141,54,105,20,72,30,135,60,99),(15,61,25,136,55,100,21,67,31,142,49,106),(16,68,26,143,56,107,22,62,32,137,50,101),(17,63,27,138,57,102,23,69,33,144,51,108),(18,70,28,133,58,97,24,64,34,139,52,103)], [(1,17,7,23),(2,22,8,16),(3,15,9,21),(4,20,10,14),(5,13,11,19),(6,18,12,24),(25,125,31,131),(26,130,32,124),(27,123,33,129),(28,128,34,122),(29,121,35,127),(30,126,36,132),(37,62,43,68),(38,67,44,61),(39,72,45,66),(40,65,46,71),(41,70,47,64),(42,63,48,69),(49,73,55,79),(50,78,56,84),(51,83,57,77),(52,76,58,82),(53,81,59,75),(54,74,60,80),(85,100,91,106),(86,105,92,99),(87,98,93,104),(88,103,94,97),(89,108,95,102),(90,101,96,107),(109,139,115,133),(110,144,116,138),(111,137,117,143),(112,142,118,136),(113,135,119,141),(114,140,120,134)])
Matrix representation ►G ⊆ GL6(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 12 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 3 |
0 | 0 | 0 | 0 | 8 | 12 |
12 | 12 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 5 | 2 |
0 | 0 | 0 | 0 | 0 | 8 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 8 | 0 |
0 | 0 | 0 | 0 | 0 | 8 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,1,0,0,0,0,12,1,0,0,0,0,0,0,0,12,0,0,0,0,1,12,0,0,0,0,0,0,1,8,0,0,0,0,3,12],[12,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,5,0,0,0,0,0,2,8],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,12,1,0,0,0,0,0,1,0,0,0,0,0,0,8,0,0,0,0,0,0,8] >;
60 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 3A | 3B | 3C | 3D | 4A | ··· | 4F | 4G | 4H | 4I | 4J | 6A | ··· | 6L | 12A | ··· | 12X |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 3 | 3 | 3 | 3 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 18 | ··· | 18 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 9 | 9 | 9 | 9 | 2 | ··· | 2 | 4 | ··· | 4 |
60 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | S3 | D6 | D6 | C4○D4 | Q8⋊3S3 |
kernel | C2×C12.26D6 | C2×C4×C3⋊S3 | C2×C12⋊S3 | C12.26D6 | Q8×C3×C6 | C6×Q8 | C2×C12 | C3×Q8 | C3×C6 | C6 |
# reps | 1 | 3 | 3 | 8 | 1 | 4 | 12 | 16 | 4 | 8 |
In GAP, Magma, Sage, TeX
C_2\times C_{12}._{26}D_6
% in TeX
G:=Group("C2xC12.26D6");
// GroupNames label
G:=SmallGroup(288,1011);
// by ID
G=gap.SmallGroup(288,1011);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,100,675,185,80,2693,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^12=1,c^6=d^2=b^6,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^7,d*b*d^-1=b^5,d*c*d^-1=c^5>;
// generators/relations