Copied to
clipboard

?

G = C2×C12.59D6order 288 = 25·32

Direct product of C2 and C12.59D6

direct product, metabelian, supersoluble, monomial

Aliases: C2×C12.59D6, C62.277C23, (C2×C12)⋊29D6, C65(C4○D12), (C22×C12)⋊12S3, (C6×C12)⋊32C22, C6.57(S3×C23), (C3×C6).56C24, (C22×C6).167D6, C12⋊S329C22, C12.214(C22×S3), (C3×C12).184C23, C327D416C22, C3⋊Dic3.46C23, C324Q827C22, (C2×C62).123C22, (C2×C6×C12)⋊10C2, C36(C2×C4○D12), (C3×C6)⋊8(C4○D4), C3214(C2×C4○D4), C2.5(C23×C3⋊S3), (C4×C3⋊S3)⋊20C22, (C22×C4)⋊8(C3⋊S3), (C2×C12⋊S3)⋊23C2, C23.32(C2×C3⋊S3), C4.43(C22×C3⋊S3), (C2×C3⋊S3).50C23, (C2×C327D4)⋊21C2, (C2×C324Q8)⋊24C2, C22.5(C22×C3⋊S3), (C2×C6).286(C22×S3), (C22×C3⋊S3).106C22, (C2×C3⋊Dic3).182C22, (C2×C4×C3⋊S3)⋊26C2, (C2×C4)⋊10(C2×C3⋊S3), SmallGroup(288,1006)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C2×C12.59D6
C1C3C32C3×C6C2×C3⋊S3C22×C3⋊S3C2×C4×C3⋊S3 — C2×C12.59D6
C32C3×C6 — C2×C12.59D6

Subgroups: 1636 in 492 conjugacy classes, 165 normal (17 characteristic)
C1, C2, C2 [×2], C2 [×6], C3 [×4], C4 [×4], C4 [×4], C22, C22 [×2], C22 [×10], S3 [×16], C6 [×12], C6 [×8], C2×C4 [×2], C2×C4 [×4], C2×C4 [×10], D4 [×12], Q8 [×4], C23, C23 [×2], C32, Dic3 [×16], C12 [×16], D6 [×32], C2×C6 [×12], C2×C6 [×8], C22×C4, C22×C4 [×2], C2×D4 [×3], C2×Q8, C4○D4 [×8], C3⋊S3 [×4], C3×C6, C3×C6 [×2], C3×C6 [×2], Dic6 [×16], C4×S3 [×32], D12 [×16], C2×Dic3 [×8], C3⋊D4 [×32], C2×C12 [×24], C22×S3 [×8], C22×C6 [×4], C2×C4○D4, C3⋊Dic3 [×4], C3×C12 [×4], C2×C3⋊S3 [×4], C2×C3⋊S3 [×4], C62, C62 [×2], C62 [×2], C2×Dic6 [×4], S3×C2×C4 [×8], C2×D12 [×4], C4○D12 [×32], C2×C3⋊D4 [×8], C22×C12 [×4], C324Q8 [×4], C4×C3⋊S3 [×8], C12⋊S3 [×4], C2×C3⋊Dic3 [×2], C327D4 [×8], C6×C12 [×2], C6×C12 [×4], C22×C3⋊S3 [×2], C2×C62, C2×C4○D12 [×4], C2×C324Q8, C2×C4×C3⋊S3 [×2], C2×C12⋊S3, C12.59D6 [×8], C2×C327D4 [×2], C2×C6×C12, C2×C12.59D6

Quotients:
C1, C2 [×15], C22 [×35], S3 [×4], C23 [×15], D6 [×28], C4○D4 [×2], C24, C3⋊S3, C22×S3 [×28], C2×C4○D4, C2×C3⋊S3 [×7], C4○D12 [×8], S3×C23 [×4], C22×C3⋊S3 [×7], C2×C4○D12 [×4], C12.59D6 [×2], C23×C3⋊S3, C2×C12.59D6

Generators and relations
 G = < a,b,c,d | a2=b12=c6=1, d2=b6, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b5, dcd-1=b6c-1 >

Smallest permutation representation
On 144 points
Generators in S144
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 33)(8 34)(9 35)(10 36)(11 25)(12 26)(13 67)(14 68)(15 69)(16 70)(17 71)(18 72)(19 61)(20 62)(21 63)(22 64)(23 65)(24 66)(37 49)(38 50)(39 51)(40 52)(41 53)(42 54)(43 55)(44 56)(45 57)(46 58)(47 59)(48 60)(73 107)(74 108)(75 97)(76 98)(77 99)(78 100)(79 101)(80 102)(81 103)(82 104)(83 105)(84 106)(85 138)(86 139)(87 140)(88 141)(89 142)(90 143)(91 144)(92 133)(93 134)(94 135)(95 136)(96 137)(109 123)(110 124)(111 125)(112 126)(113 127)(114 128)(115 129)(116 130)(117 131)(118 132)(119 121)(120 122)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 106 63 85 49 114)(2 107 64 86 50 115)(3 108 65 87 51 116)(4 97 66 88 52 117)(5 98 67 89 53 118)(6 99 68 90 54 119)(7 100 69 91 55 120)(8 101 70 92 56 109)(9 102 71 93 57 110)(10 103 72 94 58 111)(11 104 61 95 59 112)(12 105 62 96 60 113)(13 142 41 132 31 76)(14 143 42 121 32 77)(15 144 43 122 33 78)(16 133 44 123 34 79)(17 134 45 124 35 80)(18 135 46 125 36 81)(19 136 47 126 25 82)(20 137 48 127 26 83)(21 138 37 128 27 84)(22 139 38 129 28 73)(23 140 39 130 29 74)(24 141 40 131 30 75)
(1 128 7 122)(2 121 8 127)(3 126 9 132)(4 131 10 125)(5 124 11 130)(6 129 12 123)(13 93 19 87)(14 86 20 92)(15 91 21 85)(16 96 22 90)(17 89 23 95)(18 94 24 88)(25 116 31 110)(26 109 32 115)(27 114 33 120)(28 119 34 113)(29 112 35 118)(30 117 36 111)(37 106 43 100)(38 99 44 105)(39 104 45 98)(40 97 46 103)(41 102 47 108)(42 107 48 101)(49 84 55 78)(50 77 56 83)(51 82 57 76)(52 75 58 81)(53 80 59 74)(54 73 60 79)(61 140 67 134)(62 133 68 139)(63 138 69 144)(64 143 70 137)(65 136 71 142)(66 141 72 135)

G:=sub<Sym(144)| (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,25)(12,26)(13,67)(14,68)(15,69)(16,70)(17,71)(18,72)(19,61)(20,62)(21,63)(22,64)(23,65)(24,66)(37,49)(38,50)(39,51)(40,52)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60)(73,107)(74,108)(75,97)(76,98)(77,99)(78,100)(79,101)(80,102)(81,103)(82,104)(83,105)(84,106)(85,138)(86,139)(87,140)(88,141)(89,142)(90,143)(91,144)(92,133)(93,134)(94,135)(95,136)(96,137)(109,123)(110,124)(111,125)(112,126)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,121)(120,122), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,106,63,85,49,114)(2,107,64,86,50,115)(3,108,65,87,51,116)(4,97,66,88,52,117)(5,98,67,89,53,118)(6,99,68,90,54,119)(7,100,69,91,55,120)(8,101,70,92,56,109)(9,102,71,93,57,110)(10,103,72,94,58,111)(11,104,61,95,59,112)(12,105,62,96,60,113)(13,142,41,132,31,76)(14,143,42,121,32,77)(15,144,43,122,33,78)(16,133,44,123,34,79)(17,134,45,124,35,80)(18,135,46,125,36,81)(19,136,47,126,25,82)(20,137,48,127,26,83)(21,138,37,128,27,84)(22,139,38,129,28,73)(23,140,39,130,29,74)(24,141,40,131,30,75), (1,128,7,122)(2,121,8,127)(3,126,9,132)(4,131,10,125)(5,124,11,130)(6,129,12,123)(13,93,19,87)(14,86,20,92)(15,91,21,85)(16,96,22,90)(17,89,23,95)(18,94,24,88)(25,116,31,110)(26,109,32,115)(27,114,33,120)(28,119,34,113)(29,112,35,118)(30,117,36,111)(37,106,43,100)(38,99,44,105)(39,104,45,98)(40,97,46,103)(41,102,47,108)(42,107,48,101)(49,84,55,78)(50,77,56,83)(51,82,57,76)(52,75,58,81)(53,80,59,74)(54,73,60,79)(61,140,67,134)(62,133,68,139)(63,138,69,144)(64,143,70,137)(65,136,71,142)(66,141,72,135)>;

G:=Group( (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,25)(12,26)(13,67)(14,68)(15,69)(16,70)(17,71)(18,72)(19,61)(20,62)(21,63)(22,64)(23,65)(24,66)(37,49)(38,50)(39,51)(40,52)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60)(73,107)(74,108)(75,97)(76,98)(77,99)(78,100)(79,101)(80,102)(81,103)(82,104)(83,105)(84,106)(85,138)(86,139)(87,140)(88,141)(89,142)(90,143)(91,144)(92,133)(93,134)(94,135)(95,136)(96,137)(109,123)(110,124)(111,125)(112,126)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,121)(120,122), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,106,63,85,49,114)(2,107,64,86,50,115)(3,108,65,87,51,116)(4,97,66,88,52,117)(5,98,67,89,53,118)(6,99,68,90,54,119)(7,100,69,91,55,120)(8,101,70,92,56,109)(9,102,71,93,57,110)(10,103,72,94,58,111)(11,104,61,95,59,112)(12,105,62,96,60,113)(13,142,41,132,31,76)(14,143,42,121,32,77)(15,144,43,122,33,78)(16,133,44,123,34,79)(17,134,45,124,35,80)(18,135,46,125,36,81)(19,136,47,126,25,82)(20,137,48,127,26,83)(21,138,37,128,27,84)(22,139,38,129,28,73)(23,140,39,130,29,74)(24,141,40,131,30,75), (1,128,7,122)(2,121,8,127)(3,126,9,132)(4,131,10,125)(5,124,11,130)(6,129,12,123)(13,93,19,87)(14,86,20,92)(15,91,21,85)(16,96,22,90)(17,89,23,95)(18,94,24,88)(25,116,31,110)(26,109,32,115)(27,114,33,120)(28,119,34,113)(29,112,35,118)(30,117,36,111)(37,106,43,100)(38,99,44,105)(39,104,45,98)(40,97,46,103)(41,102,47,108)(42,107,48,101)(49,84,55,78)(50,77,56,83)(51,82,57,76)(52,75,58,81)(53,80,59,74)(54,73,60,79)(61,140,67,134)(62,133,68,139)(63,138,69,144)(64,143,70,137)(65,136,71,142)(66,141,72,135) );

G=PermutationGroup([(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,33),(8,34),(9,35),(10,36),(11,25),(12,26),(13,67),(14,68),(15,69),(16,70),(17,71),(18,72),(19,61),(20,62),(21,63),(22,64),(23,65),(24,66),(37,49),(38,50),(39,51),(40,52),(41,53),(42,54),(43,55),(44,56),(45,57),(46,58),(47,59),(48,60),(73,107),(74,108),(75,97),(76,98),(77,99),(78,100),(79,101),(80,102),(81,103),(82,104),(83,105),(84,106),(85,138),(86,139),(87,140),(88,141),(89,142),(90,143),(91,144),(92,133),(93,134),(94,135),(95,136),(96,137),(109,123),(110,124),(111,125),(112,126),(113,127),(114,128),(115,129),(116,130),(117,131),(118,132),(119,121),(120,122)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,106,63,85,49,114),(2,107,64,86,50,115),(3,108,65,87,51,116),(4,97,66,88,52,117),(5,98,67,89,53,118),(6,99,68,90,54,119),(7,100,69,91,55,120),(8,101,70,92,56,109),(9,102,71,93,57,110),(10,103,72,94,58,111),(11,104,61,95,59,112),(12,105,62,96,60,113),(13,142,41,132,31,76),(14,143,42,121,32,77),(15,144,43,122,33,78),(16,133,44,123,34,79),(17,134,45,124,35,80),(18,135,46,125,36,81),(19,136,47,126,25,82),(20,137,48,127,26,83),(21,138,37,128,27,84),(22,139,38,129,28,73),(23,140,39,130,29,74),(24,141,40,131,30,75)], [(1,128,7,122),(2,121,8,127),(3,126,9,132),(4,131,10,125),(5,124,11,130),(6,129,12,123),(13,93,19,87),(14,86,20,92),(15,91,21,85),(16,96,22,90),(17,89,23,95),(18,94,24,88),(25,116,31,110),(26,109,32,115),(27,114,33,120),(28,119,34,113),(29,112,35,118),(30,117,36,111),(37,106,43,100),(38,99,44,105),(39,104,45,98),(40,97,46,103),(41,102,47,108),(42,107,48,101),(49,84,55,78),(50,77,56,83),(51,82,57,76),(52,75,58,81),(53,80,59,74),(54,73,60,79),(61,140,67,134),(62,133,68,139),(63,138,69,144),(64,143,70,137),(65,136,71,142),(66,141,72,135)])

Matrix representation G ⊆ GL4(𝔽13) generated by

12000
01200
00120
00012
,
1000
0100
0058
0050
,
1100
12000
00411
0022
,
121200
0100
0092
00114
G:=sub<GL(4,GF(13))| [12,0,0,0,0,12,0,0,0,0,12,0,0,0,0,12],[1,0,0,0,0,1,0,0,0,0,5,5,0,0,8,0],[1,12,0,0,1,0,0,0,0,0,4,2,0,0,11,2],[12,0,0,0,12,1,0,0,0,0,9,11,0,0,2,4] >;

84 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I3A3B3C3D4A4B4C4D4E4F4G4H4I4J6A···6AB12A···12AF
order1222222222333344444444446···612···12
size111122181818182222111122181818182···22···2

84 irreducible representations

dim111111122222
type++++++++++
imageC1C2C2C2C2C2C2S3D6D6C4○D4C4○D12
kernelC2×C12.59D6C2×C324Q8C2×C4×C3⋊S3C2×C12⋊S3C12.59D6C2×C327D4C2×C6×C12C22×C12C2×C12C22×C6C3×C6C6
# reps11218214244432

In GAP, Magma, Sage, TeX

C_2\times C_{12}._{59}D_6
% in TeX

G:=Group("C2xC12.59D6");
// GroupNames label

G:=SmallGroup(288,1006);
// by ID

G=gap.SmallGroup(288,1006);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,100,675,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^12=c^6=1,d^2=b^6,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^5,d*c*d^-1=b^6*c^-1>;
// generators/relations

׿
×
𝔽