Copied to
clipboard

?

G = C2×C12.D6order 288 = 25·32

Direct product of C2 and C12.D6

direct product, metabelian, supersoluble, monomial

Aliases: C2×C12.D6, C62.278C23, (C6×D4)⋊6S3, (C3×D4)⋊17D6, C65(D42S3), (C2×C12).169D6, C6.59(S3×C23), (C3×C6).58C24, (C22×C6).101D6, (C3×C12).129C23, C12.110(C22×S3), (C6×C12).168C22, (D4×C32)⋊24C22, C327D412C22, C3⋊Dic3.47C23, (C2×C62).84C22, C324Q823C22, D45(C2×C3⋊S3), (D4×C3×C6)⋊13C2, (C2×D4)⋊8(C3⋊S3), C36(C2×D42S3), C3216(C2×C4○D4), C2.7(C23×C3⋊S3), (C3×C6)⋊10(C4○D4), (C4×C3⋊S3)⋊15C22, C23.24(C2×C3⋊S3), C4.20(C22×C3⋊S3), (C2×C3⋊S3).51C23, (C2×C327D4)⋊19C2, (C2×C324Q8)⋊21C2, C22.1(C22×C3⋊S3), (C2×C6).287(C22×S3), (C2×C3⋊Dic3)⋊27C22, (C22×C3⋊Dic3)⋊15C2, (C22×C3⋊S3).107C22, (C2×C4×C3⋊S3)⋊8C2, (C2×C4).60(C2×C3⋊S3), SmallGroup(288,1008)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C2×C12.D6
C1C3C32C3×C6C2×C3⋊S3C22×C3⋊S3C2×C4×C3⋊S3 — C2×C12.D6
C32C3×C6 — C2×C12.D6

Subgroups: 1508 in 492 conjugacy classes, 165 normal (15 characteristic)
C1, C2, C2 [×2], C2 [×6], C3 [×4], C4 [×2], C4 [×6], C22, C22 [×4], C22 [×8], S3 [×8], C6 [×12], C6 [×16], C2×C4, C2×C4 [×15], D4 [×4], D4 [×8], Q8 [×4], C23 [×2], C23, C32, Dic3 [×24], C12 [×8], D6 [×16], C2×C6 [×20], C2×C6 [×16], C22×C4 [×3], C2×D4, C2×D4 [×2], C2×Q8, C4○D4 [×8], C3⋊S3 [×2], C3×C6, C3×C6 [×2], C3×C6 [×4], Dic6 [×16], C4×S3 [×16], C2×Dic3 [×44], C3⋊D4 [×32], C2×C12 [×4], C3×D4 [×16], C22×S3 [×4], C22×C6 [×8], C2×C4○D4, C3⋊Dic3 [×6], C3×C12 [×2], C2×C3⋊S3 [×2], C2×C3⋊S3 [×2], C62, C62 [×4], C62 [×4], C2×Dic6 [×4], S3×C2×C4 [×4], D42S3 [×32], C22×Dic3 [×8], C2×C3⋊D4 [×8], C6×D4 [×4], C324Q8 [×4], C4×C3⋊S3 [×4], C2×C3⋊Dic3, C2×C3⋊Dic3 [×10], C327D4 [×8], C6×C12, D4×C32 [×4], C22×C3⋊S3, C2×C62 [×2], C2×D42S3 [×4], C2×C324Q8, C2×C4×C3⋊S3, C12.D6 [×8], C22×C3⋊Dic3 [×2], C2×C327D4 [×2], D4×C3×C6, C2×C12.D6

Quotients:
C1, C2 [×15], C22 [×35], S3 [×4], C23 [×15], D6 [×28], C4○D4 [×2], C24, C3⋊S3, C22×S3 [×28], C2×C4○D4, C2×C3⋊S3 [×7], D42S3 [×8], S3×C23 [×4], C22×C3⋊S3 [×7], C2×D42S3 [×4], C12.D6 [×2], C23×C3⋊S3, C2×C12.D6

Generators and relations
 G = < a,b,c,d | a2=b12=c6=1, d2=b6, ab=ba, ac=ca, ad=da, cbc-1=b7, dbd-1=b-1, dcd-1=b6c-1 >

Smallest permutation representation
On 144 points
Generators in S144
(1 22)(2 23)(3 24)(4 13)(5 14)(6 15)(7 16)(8 17)(9 18)(10 19)(11 20)(12 21)(25 141)(26 142)(27 143)(28 144)(29 133)(30 134)(31 135)(32 136)(33 137)(34 138)(35 139)(36 140)(37 98)(38 99)(39 100)(40 101)(41 102)(42 103)(43 104)(44 105)(45 106)(46 107)(47 108)(48 97)(49 68)(50 69)(51 70)(52 71)(53 72)(54 61)(55 62)(56 63)(57 64)(58 65)(59 66)(60 67)(73 110)(74 111)(75 112)(76 113)(77 114)(78 115)(79 116)(80 117)(81 118)(82 119)(83 120)(84 109)(85 121)(86 122)(87 123)(88 124)(89 125)(90 126)(91 127)(92 128)(93 129)(94 130)(95 131)(96 132)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 117 30 48 131 63)(2 112 31 43 132 70)(3 119 32 38 121 65)(4 114 33 45 122 72)(5 109 34 40 123 67)(6 116 35 47 124 62)(7 111 36 42 125 69)(8 118 25 37 126 64)(9 113 26 44 127 71)(10 120 27 39 128 66)(11 115 28 46 129 61)(12 110 29 41 130 68)(13 77 137 106 86 53)(14 84 138 101 87 60)(15 79 139 108 88 55)(16 74 140 103 89 50)(17 81 141 98 90 57)(18 76 142 105 91 52)(19 83 143 100 92 59)(20 78 144 107 93 54)(21 73 133 102 94 49)(22 80 134 97 95 56)(23 75 135 104 96 51)(24 82 136 99 85 58)
(1 63 7 69)(2 62 8 68)(3 61 9 67)(4 72 10 66)(5 71 11 65)(6 70 12 64)(13 53 19 59)(14 52 20 58)(15 51 21 57)(16 50 22 56)(17 49 23 55)(18 60 24 54)(25 41 31 47)(26 40 32 46)(27 39 33 45)(28 38 34 44)(29 37 35 43)(30 48 36 42)(73 96 79 90)(74 95 80 89)(75 94 81 88)(76 93 82 87)(77 92 83 86)(78 91 84 85)(97 140 103 134)(98 139 104 133)(99 138 105 144)(100 137 106 143)(101 136 107 142)(102 135 108 141)(109 121 115 127)(110 132 116 126)(111 131 117 125)(112 130 118 124)(113 129 119 123)(114 128 120 122)

G:=sub<Sym(144)| (1,22)(2,23)(3,24)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(10,19)(11,20)(12,21)(25,141)(26,142)(27,143)(28,144)(29,133)(30,134)(31,135)(32,136)(33,137)(34,138)(35,139)(36,140)(37,98)(38,99)(39,100)(40,101)(41,102)(42,103)(43,104)(44,105)(45,106)(46,107)(47,108)(48,97)(49,68)(50,69)(51,70)(52,71)(53,72)(54,61)(55,62)(56,63)(57,64)(58,65)(59,66)(60,67)(73,110)(74,111)(75,112)(76,113)(77,114)(78,115)(79,116)(80,117)(81,118)(82,119)(83,120)(84,109)(85,121)(86,122)(87,123)(88,124)(89,125)(90,126)(91,127)(92,128)(93,129)(94,130)(95,131)(96,132), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,117,30,48,131,63)(2,112,31,43,132,70)(3,119,32,38,121,65)(4,114,33,45,122,72)(5,109,34,40,123,67)(6,116,35,47,124,62)(7,111,36,42,125,69)(8,118,25,37,126,64)(9,113,26,44,127,71)(10,120,27,39,128,66)(11,115,28,46,129,61)(12,110,29,41,130,68)(13,77,137,106,86,53)(14,84,138,101,87,60)(15,79,139,108,88,55)(16,74,140,103,89,50)(17,81,141,98,90,57)(18,76,142,105,91,52)(19,83,143,100,92,59)(20,78,144,107,93,54)(21,73,133,102,94,49)(22,80,134,97,95,56)(23,75,135,104,96,51)(24,82,136,99,85,58), (1,63,7,69)(2,62,8,68)(3,61,9,67)(4,72,10,66)(5,71,11,65)(6,70,12,64)(13,53,19,59)(14,52,20,58)(15,51,21,57)(16,50,22,56)(17,49,23,55)(18,60,24,54)(25,41,31,47)(26,40,32,46)(27,39,33,45)(28,38,34,44)(29,37,35,43)(30,48,36,42)(73,96,79,90)(74,95,80,89)(75,94,81,88)(76,93,82,87)(77,92,83,86)(78,91,84,85)(97,140,103,134)(98,139,104,133)(99,138,105,144)(100,137,106,143)(101,136,107,142)(102,135,108,141)(109,121,115,127)(110,132,116,126)(111,131,117,125)(112,130,118,124)(113,129,119,123)(114,128,120,122)>;

G:=Group( (1,22)(2,23)(3,24)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(10,19)(11,20)(12,21)(25,141)(26,142)(27,143)(28,144)(29,133)(30,134)(31,135)(32,136)(33,137)(34,138)(35,139)(36,140)(37,98)(38,99)(39,100)(40,101)(41,102)(42,103)(43,104)(44,105)(45,106)(46,107)(47,108)(48,97)(49,68)(50,69)(51,70)(52,71)(53,72)(54,61)(55,62)(56,63)(57,64)(58,65)(59,66)(60,67)(73,110)(74,111)(75,112)(76,113)(77,114)(78,115)(79,116)(80,117)(81,118)(82,119)(83,120)(84,109)(85,121)(86,122)(87,123)(88,124)(89,125)(90,126)(91,127)(92,128)(93,129)(94,130)(95,131)(96,132), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,117,30,48,131,63)(2,112,31,43,132,70)(3,119,32,38,121,65)(4,114,33,45,122,72)(5,109,34,40,123,67)(6,116,35,47,124,62)(7,111,36,42,125,69)(8,118,25,37,126,64)(9,113,26,44,127,71)(10,120,27,39,128,66)(11,115,28,46,129,61)(12,110,29,41,130,68)(13,77,137,106,86,53)(14,84,138,101,87,60)(15,79,139,108,88,55)(16,74,140,103,89,50)(17,81,141,98,90,57)(18,76,142,105,91,52)(19,83,143,100,92,59)(20,78,144,107,93,54)(21,73,133,102,94,49)(22,80,134,97,95,56)(23,75,135,104,96,51)(24,82,136,99,85,58), (1,63,7,69)(2,62,8,68)(3,61,9,67)(4,72,10,66)(5,71,11,65)(6,70,12,64)(13,53,19,59)(14,52,20,58)(15,51,21,57)(16,50,22,56)(17,49,23,55)(18,60,24,54)(25,41,31,47)(26,40,32,46)(27,39,33,45)(28,38,34,44)(29,37,35,43)(30,48,36,42)(73,96,79,90)(74,95,80,89)(75,94,81,88)(76,93,82,87)(77,92,83,86)(78,91,84,85)(97,140,103,134)(98,139,104,133)(99,138,105,144)(100,137,106,143)(101,136,107,142)(102,135,108,141)(109,121,115,127)(110,132,116,126)(111,131,117,125)(112,130,118,124)(113,129,119,123)(114,128,120,122) );

G=PermutationGroup([(1,22),(2,23),(3,24),(4,13),(5,14),(6,15),(7,16),(8,17),(9,18),(10,19),(11,20),(12,21),(25,141),(26,142),(27,143),(28,144),(29,133),(30,134),(31,135),(32,136),(33,137),(34,138),(35,139),(36,140),(37,98),(38,99),(39,100),(40,101),(41,102),(42,103),(43,104),(44,105),(45,106),(46,107),(47,108),(48,97),(49,68),(50,69),(51,70),(52,71),(53,72),(54,61),(55,62),(56,63),(57,64),(58,65),(59,66),(60,67),(73,110),(74,111),(75,112),(76,113),(77,114),(78,115),(79,116),(80,117),(81,118),(82,119),(83,120),(84,109),(85,121),(86,122),(87,123),(88,124),(89,125),(90,126),(91,127),(92,128),(93,129),(94,130),(95,131),(96,132)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,117,30,48,131,63),(2,112,31,43,132,70),(3,119,32,38,121,65),(4,114,33,45,122,72),(5,109,34,40,123,67),(6,116,35,47,124,62),(7,111,36,42,125,69),(8,118,25,37,126,64),(9,113,26,44,127,71),(10,120,27,39,128,66),(11,115,28,46,129,61),(12,110,29,41,130,68),(13,77,137,106,86,53),(14,84,138,101,87,60),(15,79,139,108,88,55),(16,74,140,103,89,50),(17,81,141,98,90,57),(18,76,142,105,91,52),(19,83,143,100,92,59),(20,78,144,107,93,54),(21,73,133,102,94,49),(22,80,134,97,95,56),(23,75,135,104,96,51),(24,82,136,99,85,58)], [(1,63,7,69),(2,62,8,68),(3,61,9,67),(4,72,10,66),(5,71,11,65),(6,70,12,64),(13,53,19,59),(14,52,20,58),(15,51,21,57),(16,50,22,56),(17,49,23,55),(18,60,24,54),(25,41,31,47),(26,40,32,46),(27,39,33,45),(28,38,34,44),(29,37,35,43),(30,48,36,42),(73,96,79,90),(74,95,80,89),(75,94,81,88),(76,93,82,87),(77,92,83,86),(78,91,84,85),(97,140,103,134),(98,139,104,133),(99,138,105,144),(100,137,106,143),(101,136,107,142),(102,135,108,141),(109,121,115,127),(110,132,116,126),(111,131,117,125),(112,130,118,124),(113,129,119,123),(114,128,120,122)])

Matrix representation G ⊆ GL6(𝔽13)

1200000
0120000
0012000
0001200
0000120
0000012
,
800000
050000
0011200
001000
000001
0000121
,
050000
800000
0001200
0011200
0000012
0000112
,
080000
800000
0011200
0001200
000001
000010

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[8,0,0,0,0,0,0,5,0,0,0,0,0,0,1,1,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,1,1],[0,8,0,0,0,0,5,0,0,0,0,0,0,0,0,1,0,0,0,0,12,12,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[0,8,0,0,0,0,8,0,0,0,0,0,0,0,1,0,0,0,0,0,12,12,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

60 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I3A3B3C3D4A4B4C4D4E4F4G4H4I4J6A···6L6M···6AB12A···12H
order1222222222333344444444446···66···612···12
size1111222218182222229999181818182···24···44···4

60 irreducible representations

dim1111111222224
type+++++++++++-
imageC1C2C2C2C2C2C2S3D6D6D6C4○D4D42S3
kernelC2×C12.D6C2×C324Q8C2×C4×C3⋊S3C12.D6C22×C3⋊Dic3C2×C327D4D4×C3×C6C6×D4C2×C12C3×D4C22×C6C3×C6C6
# reps11182214416848

In GAP, Magma, Sage, TeX

C_2\times C_{12}.D_6
% in TeX

G:=Group("C2xC12.D6");
// GroupNames label

G:=SmallGroup(288,1008);
// by ID

G=gap.SmallGroup(288,1008);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,100,675,185,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^12=c^6=1,d^2=b^6,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^7,d*b*d^-1=b^-1,d*c*d^-1=b^6*c^-1>;
// generators/relations

׿
×
𝔽