extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C4).1D18 = C4.D36 | φ: D18/C9 → C22 ⊆ Aut C2×C4 | 144 | 4- | (C2xC4).1D18 | 288,30 |
(C2×C4).2D18 = C36.48D4 | φ: D18/C9 → C22 ⊆ Aut C2×C4 | 72 | 4+ | (C2xC4).2D18 | 288,31 |
(C2×C4).3D18 = C36.D4 | φ: D18/C9 → C22 ⊆ Aut C2×C4 | 72 | 4 | (C2xC4).3D18 | 288,39 |
(C2×C4).4D18 = C36.9D4 | φ: D18/C9 → C22 ⊆ Aut C2×C4 | 144 | 4 | (C2xC4).4D18 | 288,42 |
(C2×C4).5D18 = C22⋊2Dic18 | φ: D18/C9 → C22 ⊆ Aut C2×C4 | 144 | | (C2xC4).5D18 | 288,88 |
(C2×C4).6D18 = C23.8D18 | φ: D18/C9 → C22 ⊆ Aut C2×C4 | 144 | | (C2xC4).6D18 | 288,89 |
(C2×C4).7D18 = C22.4D36 | φ: D18/C9 → C22 ⊆ Aut C2×C4 | 144 | | (C2xC4).7D18 | 288,96 |
(C2×C4).8D18 = C36⋊Q8 | φ: D18/C9 → C22 ⊆ Aut C2×C4 | 288 | | (C2xC4).8D18 | 288,98 |
(C2×C4).9D18 = C4⋊D36 | φ: D18/C9 → C22 ⊆ Aut C2×C4 | 144 | | (C2xC4).9D18 | 288,105 |
(C2×C4).10D18 = D18⋊2Q8 | φ: D18/C9 → C22 ⊆ Aut C2×C4 | 144 | | (C2xC4).10D18 | 288,107 |
(C2×C4).11D18 = C4⋊C4⋊D9 | φ: D18/C9 → C22 ⊆ Aut C2×C4 | 144 | | (C2xC4).11D18 | 288,108 |
(C2×C4).12D18 = C8⋊D18 | φ: D18/C9 → C22 ⊆ Aut C2×C4 | 72 | 4+ | (C2xC4).12D18 | 288,118 |
(C2×C4).13D18 = C8.D18 | φ: D18/C9 → C22 ⊆ Aut C2×C4 | 144 | 4- | (C2xC4).13D18 | 288,119 |
(C2×C4).14D18 = D36⋊6C22 | φ: D18/C9 → C22 ⊆ Aut C2×C4 | 72 | 4 | (C2xC4).14D18 | 288,143 |
(C2×C4).15D18 = C23.23D18 | φ: D18/C9 → C22 ⊆ Aut C2×C4 | 144 | | (C2xC4).15D18 | 288,145 |
(C2×C4).16D18 = Dic9⋊D4 | φ: D18/C9 → C22 ⊆ Aut C2×C4 | 144 | | (C2xC4).16D18 | 288,149 |
(C2×C4).17D18 = C36.C23 | φ: D18/C9 → C22 ⊆ Aut C2×C4 | 144 | 4 | (C2xC4).17D18 | 288,153 |
(C2×C4).18D18 = Dic9⋊Q8 | φ: D18/C9 → C22 ⊆ Aut C2×C4 | 288 | | (C2xC4).18D18 | 288,154 |
(C2×C4).19D18 = D18⋊3Q8 | φ: D18/C9 → C22 ⊆ Aut C2×C4 | 144 | | (C2xC4).19D18 | 288,156 |
(C2×C4).20D18 = D4.D18 | φ: D18/C9 → C22 ⊆ Aut C2×C4 | 144 | 4- | (C2xC4).20D18 | 288,159 |
(C2×C4).21D18 = D4⋊D18 | φ: D18/C9 → C22 ⊆ Aut C2×C4 | 72 | 4+ | (C2xC4).21D18 | 288,160 |
(C2×C4).22D18 = Q8.15D18 | φ: D18/C9 → C22 ⊆ Aut C2×C4 | 144 | 4 | (C2xC4).22D18 | 288,361 |
(C2×C4).23D18 = D4.10D18 | φ: D18/C9 → C22 ⊆ Aut C2×C4 | 144 | 4- | (C2xC4).23D18 | 288,364 |
(C2×C4).24D18 = C23.16D18 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).24D18 | 288,87 |
(C2×C4).25D18 = Dic9⋊4D4 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).25D18 | 288,91 |
(C2×C4).26D18 = C23.9D18 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).26D18 | 288,93 |
(C2×C4).27D18 = D18⋊D4 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).27D18 | 288,94 |
(C2×C4).28D18 = Dic9.D4 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).28D18 | 288,95 |
(C2×C4).29D18 = Dic9⋊3Q8 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).29D18 | 288,97 |
(C2×C4).30D18 = Dic9.Q8 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).30D18 | 288,99 |
(C2×C4).31D18 = C4⋊C4⋊7D9 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).31D18 | 288,102 |
(C2×C4).32D18 = D36⋊C4 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).32D18 | 288,103 |
(C2×C4).33D18 = D18.D4 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).33D18 | 288,104 |
(C2×C4).34D18 = D18⋊Q8 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).34D18 | 288,106 |
(C2×C4).35D18 = C36.Q8 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).35D18 | 288,14 |
(C2×C4).36D18 = C4.Dic18 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).36D18 | 288,15 |
(C2×C4).37D18 = C18.Q16 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).37D18 | 288,16 |
(C2×C4).38D18 = C18.D8 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).38D18 | 288,17 |
(C2×C4).39D18 = C36.53D4 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 144 | 4 | (C2xC4).39D18 | 288,29 |
(C2×C4).40D18 = Dic18⋊C4 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 72 | 4 | (C2xC4).40D18 | 288,32 |
(C2×C4).41D18 = D4⋊Dic9 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).41D18 | 288,40 |
(C2×C4).42D18 = Q8⋊2Dic9 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).42D18 | 288,43 |
(C2×C4).43D18 = Q8⋊3Dic9 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 72 | 4 | (C2xC4).43D18 | 288,44 |
(C2×C4).44D18 = C36.3Q8 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).44D18 | 288,100 |
(C2×C4).45D18 = C4⋊C4×D9 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).45D18 | 288,101 |
(C2×C4).46D18 = M4(2)×D9 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 72 | 4 | (C2xC4).46D18 | 288,116 |
(C2×C4).47D18 = D36.C4 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 144 | 4 | (C2xC4).47D18 | 288,117 |
(C2×C4).48D18 = C2×D4.D9 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).48D18 | 288,141 |
(C2×C4).49D18 = C2×D4⋊D9 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).49D18 | 288,142 |
(C2×C4).50D18 = D4×Dic9 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).50D18 | 288,144 |
(C2×C4).51D18 = C36.17D4 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).51D18 | 288,146 |
(C2×C4).52D18 = C36⋊2D4 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).52D18 | 288,148 |
(C2×C4).53D18 = C36⋊D4 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).53D18 | 288,150 |
(C2×C4).54D18 = C2×C9⋊Q16 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).54D18 | 288,151 |
(C2×C4).55D18 = C2×Q8⋊2D9 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).55D18 | 288,152 |
(C2×C4).56D18 = Q8×Dic9 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).56D18 | 288,155 |
(C2×C4).57D18 = C36.23D4 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).57D18 | 288,157 |
(C2×C4).58D18 = D4.Dic9 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 144 | 4 | (C2xC4).58D18 | 288,158 |
(C2×C4).59D18 = D4.9D18 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 144 | 4 | (C2xC4).59D18 | 288,161 |
(C2×C4).60D18 = C2×D4⋊2D9 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).60D18 | 288,357 |
(C2×C4).61D18 = C2×Q8×D9 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).61D18 | 288,359 |
(C2×C4).62D18 = C2×Q8⋊3D9 | φ: D18/D9 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).62D18 | 288,360 |
(C2×C4).63D18 = C36.6Q8 | φ: D18/C18 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).63D18 | 288,80 |
(C2×C4).64D18 = C42⋊2D9 | φ: D18/C18 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).64D18 | 288,82 |
(C2×C4).65D18 = C42⋊7D9 | φ: D18/C18 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).65D18 | 288,85 |
(C2×C4).66D18 = C42⋊3D9 | φ: D18/C18 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).66D18 | 288,86 |
(C2×C4).67D18 = C2×Dic9⋊C4 | φ: D18/C18 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).67D18 | 288,133 |
(C2×C4).68D18 = C36.49D4 | φ: D18/C18 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).68D18 | 288,134 |
(C2×C4).69D18 = C23.28D18 | φ: D18/C18 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).69D18 | 288,139 |
(C2×C4).70D18 = C36⋊7D4 | φ: D18/C18 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).70D18 | 288,140 |
(C2×C4).71D18 = C42⋊4D9 | φ: D18/C18 → C2 ⊆ Aut C2×C4 | 72 | 2 | (C2xC4).71D18 | 288,12 |
(C2×C4).72D18 = C72.C4 | φ: D18/C18 → C2 ⊆ Aut C2×C4 | 144 | 2 | (C2xC4).72D18 | 288,20 |
(C2×C4).73D18 = C36.45D4 | φ: D18/C18 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).73D18 | 288,24 |
(C2×C4).74D18 = C8⋊Dic9 | φ: D18/C18 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).74D18 | 288,25 |
(C2×C4).75D18 = C72⋊1C4 | φ: D18/C18 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).75D18 | 288,26 |
(C2×C4).76D18 = C2.D72 | φ: D18/C18 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).76D18 | 288,28 |
(C2×C4).77D18 = C36⋊2Q8 | φ: D18/C18 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).77D18 | 288,79 |
(C2×C4).78D18 = C42⋊6D9 | φ: D18/C18 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).78D18 | 288,84 |
(C2×C4).79D18 = C2×Dic36 | φ: D18/C18 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).79D18 | 288,109 |
(C2×C4).80D18 = D36.2C4 | φ: D18/C18 → C2 ⊆ Aut C2×C4 | 144 | 2 | (C2xC4).80D18 | 288,112 |
(C2×C4).81D18 = C2×C72⋊C2 | φ: D18/C18 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).81D18 | 288,113 |
(C2×C4).82D18 = C2×D72 | φ: D18/C18 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).82D18 | 288,114 |
(C2×C4).83D18 = D72⋊7C2 | φ: D18/C18 → C2 ⊆ Aut C2×C4 | 144 | 2 | (C2xC4).83D18 | 288,115 |
(C2×C4).84D18 = C2×C4.Dic9 | φ: D18/C18 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).84D18 | 288,131 |
(C2×C4).85D18 = C2×C4⋊Dic9 | φ: D18/C18 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).85D18 | 288,135 |
(C2×C4).86D18 = C22×Dic18 | φ: D18/C18 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).86D18 | 288,352 |
(C2×C4).87D18 = C4×C9⋊C8 | central extension (φ=1) | 288 | | (C2xC4).87D18 | 288,9 |
(C2×C4).88D18 = C42.D9 | central extension (φ=1) | 288 | | (C2xC4).88D18 | 288,10 |
(C2×C4).89D18 = C36⋊C8 | central extension (φ=1) | 288 | | (C2xC4).89D18 | 288,11 |
(C2×C4).90D18 = C8×Dic9 | central extension (φ=1) | 288 | | (C2xC4).90D18 | 288,21 |
(C2×C4).91D18 = Dic9⋊C8 | central extension (φ=1) | 288 | | (C2xC4).91D18 | 288,22 |
(C2×C4).92D18 = C72⋊C4 | central extension (φ=1) | 288 | | (C2xC4).92D18 | 288,23 |
(C2×C4).93D18 = D18⋊C8 | central extension (φ=1) | 144 | | (C2xC4).93D18 | 288,27 |
(C2×C4).94D18 = C36.55D4 | central extension (φ=1) | 144 | | (C2xC4).94D18 | 288,37 |
(C2×C4).95D18 = C4×Dic18 | central extension (φ=1) | 288 | | (C2xC4).95D18 | 288,78 |
(C2×C4).96D18 = C42×D9 | central extension (φ=1) | 144 | | (C2xC4).96D18 | 288,81 |
(C2×C4).97D18 = C4×D36 | central extension (φ=1) | 144 | | (C2xC4).97D18 | 288,83 |
(C2×C4).98D18 = C2×C8×D9 | central extension (φ=1) | 144 | | (C2xC4).98D18 | 288,110 |
(C2×C4).99D18 = C2×C8⋊D9 | central extension (φ=1) | 144 | | (C2xC4).99D18 | 288,111 |
(C2×C4).100D18 = C22×C9⋊C8 | central extension (φ=1) | 288 | | (C2xC4).100D18 | 288,130 |
(C2×C4).101D18 = C2×C4×Dic9 | central extension (φ=1) | 288 | | (C2xC4).101D18 | 288,132 |
(C2×C4).102D18 = C23.26D18 | central extension (φ=1) | 144 | | (C2xC4).102D18 | 288,136 |
(C2×C4).103D18 = C4×C9⋊D4 | central extension (φ=1) | 144 | | (C2xC4).103D18 | 288,138 |