extension | φ:Q→Aut N | d | ρ | Label | ID |
C12.1(C3⋊D4) = C9⋊D16 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 144 | 4+ | C12.1(C3:D4) | 288,33 |
C12.2(C3⋊D4) = D8.D9 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 144 | 4- | C12.2(C3:D4) | 288,34 |
C12.3(C3⋊D4) = C9⋊SD32 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 144 | 4+ | C12.3(C3:D4) | 288,35 |
C12.4(C3⋊D4) = C9⋊Q32 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 288 | 4- | C12.4(C3:D4) | 288,36 |
C12.5(C3⋊D4) = C36.D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 72 | 4 | C12.5(C3:D4) | 288,39 |
C12.6(C3⋊D4) = D4⋊Dic9 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 144 | | C12.6(C3:D4) | 288,40 |
C12.7(C3⋊D4) = C36.9D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 144 | 4 | C12.7(C3:D4) | 288,42 |
C12.8(C3⋊D4) = Q8⋊2Dic9 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 288 | | C12.8(C3:D4) | 288,43 |
C12.9(C3⋊D4) = C2×D4.D9 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 144 | | C12.9(C3:D4) | 288,141 |
C12.10(C3⋊D4) = C2×D4⋊D9 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 144 | | C12.10(C3:D4) | 288,142 |
C12.11(C3⋊D4) = D36⋊6C22 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 72 | 4 | C12.11(C3:D4) | 288,143 |
C12.12(C3⋊D4) = C36.17D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 144 | | C12.12(C3:D4) | 288,146 |
C12.13(C3⋊D4) = C36⋊2D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 144 | | C12.13(C3:D4) | 288,148 |
C12.14(C3⋊D4) = C36⋊D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 144 | | C12.14(C3:D4) | 288,150 |
C12.15(C3⋊D4) = C2×C9⋊Q16 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 288 | | C12.15(C3:D4) | 288,151 |
C12.16(C3⋊D4) = C2×Q8⋊2D9 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 144 | | C12.16(C3:D4) | 288,152 |
C12.17(C3⋊D4) = C36.C23 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 144 | 4 | C12.17(C3:D4) | 288,153 |
C12.18(C3⋊D4) = Dic9⋊Q8 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 288 | | C12.18(C3:D4) | 288,154 |
C12.19(C3⋊D4) = D18⋊3Q8 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 144 | | C12.19(C3:D4) | 288,156 |
C12.20(C3⋊D4) = C36.23D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 144 | | C12.20(C3:D4) | 288,157 |
C12.21(C3⋊D4) = C32⋊2D16 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 96 | 4 | C12.21(C3:D4) | 288,193 |
C12.22(C3⋊D4) = D24.S3 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 96 | 4 | C12.22(C3:D4) | 288,195 |
C12.23(C3⋊D4) = C32⋊2Q32 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 96 | 4 | C12.23(C3:D4) | 288,198 |
C12.24(C3⋊D4) = C12.D12 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 48 | 4 | C12.24(C3:D4) | 288,206 |
C12.25(C3⋊D4) = C12.70D12 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 24 | 4+ | C12.25(C3:D4) | 288,207 |
C12.26(C3⋊D4) = C12.14D12 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 48 | 4 | C12.26(C3:D4) | 288,208 |
C12.27(C3⋊D4) = C12.71D12 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 48 | 4- | C12.27(C3:D4) | 288,209 |
C12.28(C3⋊D4) = D12⋊3Dic3 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 96 | | C12.28(C3:D4) | 288,210 |
C12.29(C3⋊D4) = C6.16D24 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 96 | | C12.29(C3:D4) | 288,211 |
C12.30(C3⋊D4) = C6.17D24 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 48 | | C12.30(C3:D4) | 288,212 |
C12.31(C3⋊D4) = Dic6⋊Dic3 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 96 | | C12.31(C3:D4) | 288,213 |
C12.32(C3⋊D4) = C6.Dic12 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 96 | | C12.32(C3:D4) | 288,214 |
C12.33(C3⋊D4) = C12.73D12 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 96 | | C12.33(C3:D4) | 288,215 |
C12.34(C3⋊D4) = C32⋊7D16 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 144 | | C12.34(C3:D4) | 288,301 |
C12.35(C3⋊D4) = C32⋊8SD32 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 144 | | C12.35(C3:D4) | 288,302 |
C12.36(C3⋊D4) = C32⋊10SD32 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 144 | | C12.36(C3:D4) | 288,303 |
C12.37(C3⋊D4) = C32⋊7Q32 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 288 | | C12.37(C3:D4) | 288,304 |
C12.38(C3⋊D4) = C62.116D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 144 | | C12.38(C3:D4) | 288,307 |
C12.39(C3⋊D4) = (C6×D4).S3 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 72 | | C12.39(C3:D4) | 288,308 |
C12.40(C3⋊D4) = C62.117D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 288 | | C12.40(C3:D4) | 288,310 |
C12.41(C3⋊D4) = (C6×C12).C4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 144 | | C12.41(C3:D4) | 288,311 |
C12.42(C3⋊D4) = C2×C32⋊2D8 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 96 | | C12.42(C3:D4) | 288,469 |
C12.43(C3⋊D4) = D12⋊20D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 48 | 4 | C12.43(C3:D4) | 288,471 |
C12.44(C3⋊D4) = D12⋊18D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 24 | 4+ | C12.44(C3:D4) | 288,473 |
C12.45(C3⋊D4) = C2×Dic6⋊S3 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 96 | | C12.45(C3:D4) | 288,474 |
C12.46(C3⋊D4) = D12.32D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 48 | 4 | C12.46(C3:D4) | 288,475 |
C12.47(C3⋊D4) = D12.28D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 48 | 4 | C12.47(C3:D4) | 288,478 |
C12.48(C3⋊D4) = D12.29D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 48 | 4- | C12.48(C3:D4) | 288,479 |
C12.49(C3⋊D4) = Dic6.29D6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 48 | 4 | C12.49(C3:D4) | 288,481 |
C12.50(C3⋊D4) = C2×C32⋊2Q16 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 96 | | C12.50(C3:D4) | 288,482 |
C12.51(C3⋊D4) = D6⋊6Dic6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 96 | | C12.51(C3:D4) | 288,504 |
C12.52(C3⋊D4) = D6⋊7Dic6 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 96 | | C12.52(C3:D4) | 288,505 |
C12.53(C3⋊D4) = C62.33C23 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 96 | | C12.53(C3:D4) | 288,511 |
C12.54(C3⋊D4) = C12.30D12 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 48 | | C12.54(C3:D4) | 288,519 |
C12.55(C3⋊D4) = C62.43C23 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 96 | | C12.55(C3:D4) | 288,521 |
C12.56(C3⋊D4) = C2×C32⋊7D8 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 144 | | C12.56(C3:D4) | 288,788 |
C12.57(C3⋊D4) = C62.131D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 72 | | C12.57(C3:D4) | 288,789 |
C12.58(C3⋊D4) = C2×C32⋊9SD16 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 144 | | C12.58(C3:D4) | 288,790 |
C12.59(C3⋊D4) = C62.254C23 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 144 | | C12.59(C3:D4) | 288,793 |
C12.60(C3⋊D4) = C2×C32⋊11SD16 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 144 | | C12.60(C3:D4) | 288,798 |
C12.61(C3⋊D4) = C62.134D4 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 144 | | C12.61(C3:D4) | 288,799 |
C12.62(C3⋊D4) = C2×C32⋊7Q16 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 288 | | C12.62(C3:D4) | 288,800 |
C12.63(C3⋊D4) = C62.259C23 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 288 | | C12.63(C3:D4) | 288,801 |
C12.64(C3⋊D4) = C62.261C23 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 144 | | C12.64(C3:D4) | 288,803 |
C12.65(C3⋊D4) = C62.262C23 | φ: C3⋊D4/C6 → C22 ⊆ Aut C12 | 144 | | C12.65(C3:D4) | 288,804 |
C12.66(C3⋊D4) = C3⋊D48 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C12 | 48 | 4+ | C12.66(C3:D4) | 288,194 |
C12.67(C3⋊D4) = C32⋊3SD32 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C12 | 96 | 4- | C12.67(C3:D4) | 288,196 |
C12.68(C3⋊D4) = C24.49D6 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C12 | 48 | 4+ | C12.68(C3:D4) | 288,197 |
C12.69(C3⋊D4) = C32⋊3Q32 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C12 | 96 | 4- | C12.69(C3:D4) | 288,199 |
C12.70(C3⋊D4) = C2×C3⋊D24 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C12 | 48 | | C12.70(C3:D4) | 288,472 |
C12.71(C3⋊D4) = C2×D12.S3 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C12 | 96 | | C12.71(C3:D4) | 288,476 |
C12.72(C3⋊D4) = C2×C32⋊5SD16 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C12 | 48 | | C12.72(C3:D4) | 288,480 |
C12.73(C3⋊D4) = C2×C32⋊3Q16 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C12 | 96 | | C12.73(C3:D4) | 288,483 |
C12.74(C3⋊D4) = C12.27D12 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C12 | 96 | | C12.74(C3:D4) | 288,508 |
C12.75(C3⋊D4) = C12.28D12 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C12 | 48 | | C12.75(C3:D4) | 288,512 |
C12.76(C3⋊D4) = Dic3⋊Dic6 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C12 | 96 | | C12.76(C3:D4) | 288,514 |
C12.77(C3⋊D4) = C12.78D12 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C12 | 48 | | C12.77(C3:D4) | 288,205 |
C12.78(C3⋊D4) = D12⋊2Dic3 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C12 | 48 | 4 | C12.78(C3:D4) | 288,217 |
C12.79(C3⋊D4) = C12.80D12 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C12 | 48 | 4 | C12.79(C3:D4) | 288,218 |
C12.80(C3⋊D4) = C12.81D12 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C12 | 96 | | C12.80(C3:D4) | 288,219 |
C12.81(C3⋊D4) = C12.82D12 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C12 | 48 | 4 | C12.81(C3:D4) | 288,225 |
C12.82(C3⋊D4) = D12.27D6 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C12 | 48 | 4 | C12.82(C3:D4) | 288,477 |
C12.83(C3⋊D4) = C3×C3⋊D16 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C12 | 48 | 4 | C12.83(C3:D4) | 288,260 |
C12.84(C3⋊D4) = C3×D8.S3 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C12 | 48 | 4 | C12.84(C3:D4) | 288,261 |
C12.85(C3⋊D4) = C3×C8.6D6 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C12 | 96 | 4 | C12.85(C3:D4) | 288,262 |
C12.86(C3⋊D4) = C3×C3⋊Q32 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C12 | 96 | 4 | C12.86(C3:D4) | 288,263 |
C12.87(C3⋊D4) = C6×D4⋊S3 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C12 | 48 | | C12.87(C3:D4) | 288,702 |
C12.88(C3⋊D4) = C6×D4.S3 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C12 | 48 | | C12.88(C3:D4) | 288,704 |
C12.89(C3⋊D4) = C3×C23.12D6 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C12 | 48 | | C12.89(C3:D4) | 288,707 |
C12.90(C3⋊D4) = C6×Q8⋊2S3 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C12 | 96 | | C12.90(C3:D4) | 288,712 |
C12.91(C3⋊D4) = C6×C3⋊Q16 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C12 | 96 | | C12.91(C3:D4) | 288,714 |
C12.92(C3⋊D4) = C3×Dic3⋊Q8 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C12 | 96 | | C12.92(C3:D4) | 288,715 |
C12.93(C3⋊D4) = C3×C12.23D4 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C12 | 96 | | C12.93(C3:D4) | 288,718 |
C12.94(C3⋊D4) = C12.77D12 | φ: C3⋊D4/D6 → C2 ⊆ Aut C12 | 96 | | C12.94(C3:D4) | 288,204 |
C12.95(C3⋊D4) = D12⋊4Dic3 | φ: C3⋊D4/D6 → C2 ⊆ Aut C12 | 24 | 4 | C12.95(C3:D4) | 288,216 |
C12.96(C3⋊D4) = C12.15Dic6 | φ: C3⋊D4/D6 → C2 ⊆ Aut C12 | 96 | | C12.96(C3:D4) | 288,220 |
C12.97(C3⋊D4) = C62.5Q8 | φ: C3⋊D4/D6 → C2 ⊆ Aut C12 | 48 | 4 | C12.97(C3:D4) | 288,226 |
C12.98(C3⋊D4) = D12.30D6 | φ: C3⋊D4/D6 → C2 ⊆ Aut C12 | 48 | 4 | C12.98(C3:D4) | 288,470 |
C12.99(C3⋊D4) = C3×D4⋊Dic3 | φ: C3⋊D4/D6 → C2 ⊆ Aut C12 | 48 | | C12.99(C3:D4) | 288,266 |
C12.100(C3⋊D4) = C3×C12.D4 | φ: C3⋊D4/D6 → C2 ⊆ Aut C12 | 24 | 4 | C12.100(C3:D4) | 288,267 |
C12.101(C3⋊D4) = C3×Q8⋊2Dic3 | φ: C3⋊D4/D6 → C2 ⊆ Aut C12 | 96 | | C12.101(C3:D4) | 288,269 |
C12.102(C3⋊D4) = C3×C12.10D4 | φ: C3⋊D4/D6 → C2 ⊆ Aut C12 | 48 | 4 | C12.102(C3:D4) | 288,270 |
C12.103(C3⋊D4) = C3×D12⋊6C22 | φ: C3⋊D4/D6 → C2 ⊆ Aut C12 | 24 | 4 | C12.103(C3:D4) | 288,703 |
C12.104(C3⋊D4) = C3×Q8.11D6 | φ: C3⋊D4/D6 → C2 ⊆ Aut C12 | 48 | 4 | C12.104(C3:D4) | 288,713 |
C12.105(C3⋊D4) = C3×D6⋊3Q8 | φ: C3⋊D4/D6 → C2 ⊆ Aut C12 | 96 | | C12.105(C3:D4) | 288,717 |
C12.106(C3⋊D4) = C36.45D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 288 | | C12.106(C3:D4) | 288,24 |
C12.107(C3⋊D4) = C2.D72 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 144 | | C12.107(C3:D4) | 288,28 |
C12.108(C3⋊D4) = C4.D36 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 144 | 4- | C12.108(C3:D4) | 288,30 |
C12.109(C3⋊D4) = C36.48D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 72 | 4+ | C12.109(C3:D4) | 288,31 |
C12.110(C3⋊D4) = C36.49D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 144 | | C12.110(C3:D4) | 288,134 |
C12.111(C3⋊D4) = C36⋊7D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 144 | | C12.111(C3:D4) | 288,140 |
C12.112(C3⋊D4) = D4.D18 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 144 | 4- | C12.112(C3:D4) | 288,159 |
C12.113(C3⋊D4) = D4⋊D18 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 72 | 4+ | C12.113(C3:D4) | 288,160 |
C12.114(C3⋊D4) = C6.4Dic12 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 288 | | C12.114(C3:D4) | 288,291 |
C12.115(C3⋊D4) = C62.84D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 144 | | C12.115(C3:D4) | 288,296 |
C12.116(C3⋊D4) = C12.19D12 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 72 | | C12.116(C3:D4) | 288,298 |
C12.117(C3⋊D4) = C12.20D12 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 144 | | C12.117(C3:D4) | 288,299 |
C12.118(C3⋊D4) = C62⋊10Q8 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 144 | | C12.118(C3:D4) | 288,781 |
C12.119(C3⋊D4) = C62.73D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 72 | | C12.119(C3:D4) | 288,806 |
C12.120(C3⋊D4) = C62.75D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 144 | | C12.120(C3:D4) | 288,808 |
C12.121(C3⋊D4) = Dic9⋊C8 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 288 | | C12.121(C3:D4) | 288,22 |
C12.122(C3⋊D4) = D18⋊C8 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 144 | | C12.122(C3:D4) | 288,27 |
C12.123(C3⋊D4) = C36.53D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 144 | 4 | C12.123(C3:D4) | 288,29 |
C12.124(C3⋊D4) = Dic18⋊C4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 72 | 4 | C12.124(C3:D4) | 288,32 |
C12.125(C3⋊D4) = C36.55D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 144 | | C12.125(C3:D4) | 288,37 |
C12.126(C3⋊D4) = Q8⋊3Dic9 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 72 | 4 | C12.126(C3:D4) | 288,44 |
C12.127(C3⋊D4) = C4×C9⋊D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 144 | | C12.127(C3:D4) | 288,138 |
C12.128(C3⋊D4) = D4.9D18 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 144 | 4 | C12.128(C3:D4) | 288,161 |
C12.129(C3⋊D4) = C12.30Dic6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 288 | | C12.129(C3:D4) | 288,289 |
C12.130(C3⋊D4) = C12.60D12 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 144 | | C12.130(C3:D4) | 288,295 |
C12.131(C3⋊D4) = C62.8Q8 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 144 | | C12.131(C3:D4) | 288,297 |
C12.132(C3⋊D4) = C62.37D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 72 | | C12.132(C3:D4) | 288,300 |
C12.133(C3⋊D4) = C62⋊7C8 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 144 | | C12.133(C3:D4) | 288,305 |
C12.134(C3⋊D4) = C62.39D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 72 | | C12.134(C3:D4) | 288,312 |
C12.135(C3⋊D4) = C62.74D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 144 | | C12.135(C3:D4) | 288,807 |
C12.136(C3⋊D4) = C3×C2.Dic12 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 96 | | C12.136(C3:D4) | 288,250 |
C12.137(C3⋊D4) = C3×C2.D24 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 96 | | C12.137(C3:D4) | 288,255 |
C12.138(C3⋊D4) = C3×C12.46D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 48 | 4 | C12.138(C3:D4) | 288,257 |
C12.139(C3⋊D4) = C3×C12.47D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 48 | 4 | C12.139(C3:D4) | 288,258 |
C12.140(C3⋊D4) = C3×C12.48D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 48 | | C12.140(C3:D4) | 288,695 |
C12.141(C3⋊D4) = C3×D4⋊D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 48 | 4 | C12.141(C3:D4) | 288,720 |
C12.142(C3⋊D4) = C3×Q8.14D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C12 | 48 | 4 | C12.142(C3:D4) | 288,722 |
C12.143(C3⋊D4) = C3×Dic3⋊C8 | central extension (φ=1) | 96 | | C12.143(C3:D4) | 288,248 |
C12.144(C3⋊D4) = C3×D6⋊C8 | central extension (φ=1) | 96 | | C12.144(C3:D4) | 288,254 |
C12.145(C3⋊D4) = C3×C12.53D4 | central extension (φ=1) | 48 | 4 | C12.145(C3:D4) | 288,256 |
C12.146(C3⋊D4) = C3×D12⋊C4 | central extension (φ=1) | 48 | 4 | C12.146(C3:D4) | 288,259 |
C12.147(C3⋊D4) = C3×C12.55D4 | central extension (φ=1) | 48 | | C12.147(C3:D4) | 288,264 |
C12.148(C3⋊D4) = C3×Q8⋊3Dic3 | central extension (φ=1) | 48 | 4 | C12.148(C3:D4) | 288,271 |
C12.149(C3⋊D4) = C3×Q8.13D6 | central extension (φ=1) | 48 | 4 | C12.149(C3:D4) | 288,721 |