metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C10.442- (1+4), (C22×Q8)⋊8D5, (C2×C20).216D4, C20.261(C2×D4), D10⋊3Q8⋊41C2, (C2×Q8).188D10, Dic5⋊Q8⋊30C2, C20.23D4⋊29C2, (C2×C10).308C24, (C2×C20).648C23, C10.156(C22×D4), (C22×C4).278D10, (C2×D20).287C22, C4⋊Dic5.390C22, (Q8×C10).235C22, C22.319(C23×D5), C23.239(C22×D5), D10⋊C4.77C22, C23.21D10⋊34C2, C23.23D10⋊29C2, (C22×C20).440C22, (C22×C10).426C23, C5⋊6(C23.38C23), (C2×Dic5).159C23, (C4×Dic5).179C22, C10.D4.90C22, (C22×D5).134C23, C23.D5.132C22, C2.44(Q8.10D10), (C2×Dic10).316C22, (Q8×C2×C10)⋊7C2, C4.99(C2×C5⋊D4), (C2×C4○D20).25C2, (C2×C10).590(C2×D4), (C2×C4).94(C5⋊D4), (C2×C4×D5).174C22, C2.29(C22×C5⋊D4), C22.37(C2×C5⋊D4), (C2×C4).634(C22×D5), (C2×C5⋊D4).146C22, SmallGroup(320,1488)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 846 in 270 conjugacy classes, 111 normal (21 characteristic)
C1, C2, C2 [×2], C2 [×4], C4 [×4], C4 [×10], C22, C22 [×2], C22 [×8], C5, C2×C4 [×2], C2×C4 [×8], C2×C4 [×14], D4 [×6], Q8 [×10], C23, C23 [×2], D5 [×2], C10, C10 [×2], C10 [×2], C42 [×2], C22⋊C4 [×10], C4⋊C4 [×10], C22×C4, C22×C4 [×2], C22×C4 [×2], C2×D4 [×3], C2×Q8 [×4], C2×Q8 [×5], C4○D4 [×4], Dic5 [×6], C20 [×4], C20 [×4], D10 [×6], C2×C10, C2×C10 [×2], C2×C10 [×2], C42⋊C2, C22⋊Q8 [×4], C22.D4 [×4], C4.4D4 [×2], C4⋊Q8 [×2], C22×Q8, C2×C4○D4, Dic10 [×2], C4×D5 [×4], D20 [×2], C2×Dic5 [×6], C5⋊D4 [×4], C2×C20 [×2], C2×C20 [×8], C2×C20 [×4], C5×Q8 [×8], C22×D5 [×2], C22×C10, C23.38C23, C4×Dic5 [×2], C10.D4 [×8], C4⋊Dic5 [×2], D10⋊C4 [×8], C23.D5 [×2], C2×Dic10, C2×C4×D5 [×2], C2×D20, C4○D20 [×4], C2×C5⋊D4 [×2], C22×C20, C22×C20 [×2], Q8×C10 [×4], Q8×C10 [×4], C23.21D10, C23.23D10 [×4], Dic5⋊Q8 [×2], D10⋊3Q8 [×4], C20.23D4 [×2], C2×C4○D20, Q8×C2×C10, C10.442- (1+4)
Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C24, D10 [×7], C22×D4, 2- (1+4) [×2], C5⋊D4 [×4], C22×D5 [×7], C23.38C23, C2×C5⋊D4 [×6], C23×D5, Q8.10D10 [×2], C22×C5⋊D4, C10.442- (1+4)
Generators and relations
G = < a,b,c,d,e | a10=b4=1, c2=a5, d2=e2=a5b2, bab-1=cac-1=a-1, ad=da, ae=ea, cbc-1=a5b-1, dbd-1=ebe-1=a5b, dcd-1=ece-1=a5c, ede-1=a5b2d >
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 31 25 50)(2 40 26 49)(3 39 27 48)(4 38 28 47)(5 37 29 46)(6 36 30 45)(7 35 21 44)(8 34 22 43)(9 33 23 42)(10 32 24 41)(11 131 156 150)(12 140 157 149)(13 139 158 148)(14 138 159 147)(15 137 160 146)(16 136 151 145)(17 135 152 144)(18 134 153 143)(19 133 154 142)(20 132 155 141)(51 90 70 71)(52 89 61 80)(53 88 62 79)(54 87 63 78)(55 86 64 77)(56 85 65 76)(57 84 66 75)(58 83 67 74)(59 82 68 73)(60 81 69 72)(91 130 110 111)(92 129 101 120)(93 128 102 119)(94 127 103 118)(95 126 104 117)(96 125 105 116)(97 124 106 115)(98 123 107 114)(99 122 108 113)(100 121 109 112)
(1 71 6 76)(2 80 7 75)(3 79 8 74)(4 78 9 73)(5 77 10 72)(11 91 16 96)(12 100 17 95)(13 99 18 94)(14 98 19 93)(15 97 20 92)(21 84 26 89)(22 83 27 88)(23 82 28 87)(24 81 29 86)(25 90 30 85)(31 65 36 70)(32 64 37 69)(33 63 38 68)(34 62 39 67)(35 61 40 66)(41 55 46 60)(42 54 47 59)(43 53 48 58)(44 52 49 57)(45 51 50 56)(101 160 106 155)(102 159 107 154)(103 158 108 153)(104 157 109 152)(105 156 110 151)(111 131 116 136)(112 140 117 135)(113 139 118 134)(114 138 119 133)(115 137 120 132)(121 149 126 144)(122 148 127 143)(123 147 128 142)(124 146 129 141)(125 145 130 150)
(1 151 30 11)(2 152 21 12)(3 153 22 13)(4 154 23 14)(5 155 24 15)(6 156 25 16)(7 157 26 17)(8 158 27 18)(9 159 28 19)(10 160 29 20)(31 150 45 136)(32 141 46 137)(33 142 47 138)(34 143 48 139)(35 144 49 140)(36 145 50 131)(37 146 41 132)(38 147 42 133)(39 148 43 134)(40 149 44 135)(51 116 65 130)(52 117 66 121)(53 118 67 122)(54 119 68 123)(55 120 69 124)(56 111 70 125)(57 112 61 126)(58 113 62 127)(59 114 63 128)(60 115 64 129)(71 110 85 96)(72 101 86 97)(73 102 87 98)(74 103 88 99)(75 104 89 100)(76 105 90 91)(77 106 81 92)(78 107 82 93)(79 108 83 94)(80 109 84 95)
(1 45 30 31)(2 46 21 32)(3 47 22 33)(4 48 23 34)(5 49 24 35)(6 50 25 36)(7 41 26 37)(8 42 27 38)(9 43 28 39)(10 44 29 40)(11 136 151 150)(12 137 152 141)(13 138 153 142)(14 139 154 143)(15 140 155 144)(16 131 156 145)(17 132 157 146)(18 133 158 147)(19 134 159 148)(20 135 160 149)(51 90 65 76)(52 81 66 77)(53 82 67 78)(54 83 68 79)(55 84 69 80)(56 85 70 71)(57 86 61 72)(58 87 62 73)(59 88 63 74)(60 89 64 75)(91 116 105 130)(92 117 106 121)(93 118 107 122)(94 119 108 123)(95 120 109 124)(96 111 110 125)(97 112 101 126)(98 113 102 127)(99 114 103 128)(100 115 104 129)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,31,25,50)(2,40,26,49)(3,39,27,48)(4,38,28,47)(5,37,29,46)(6,36,30,45)(7,35,21,44)(8,34,22,43)(9,33,23,42)(10,32,24,41)(11,131,156,150)(12,140,157,149)(13,139,158,148)(14,138,159,147)(15,137,160,146)(16,136,151,145)(17,135,152,144)(18,134,153,143)(19,133,154,142)(20,132,155,141)(51,90,70,71)(52,89,61,80)(53,88,62,79)(54,87,63,78)(55,86,64,77)(56,85,65,76)(57,84,66,75)(58,83,67,74)(59,82,68,73)(60,81,69,72)(91,130,110,111)(92,129,101,120)(93,128,102,119)(94,127,103,118)(95,126,104,117)(96,125,105,116)(97,124,106,115)(98,123,107,114)(99,122,108,113)(100,121,109,112), (1,71,6,76)(2,80,7,75)(3,79,8,74)(4,78,9,73)(5,77,10,72)(11,91,16,96)(12,100,17,95)(13,99,18,94)(14,98,19,93)(15,97,20,92)(21,84,26,89)(22,83,27,88)(23,82,28,87)(24,81,29,86)(25,90,30,85)(31,65,36,70)(32,64,37,69)(33,63,38,68)(34,62,39,67)(35,61,40,66)(41,55,46,60)(42,54,47,59)(43,53,48,58)(44,52,49,57)(45,51,50,56)(101,160,106,155)(102,159,107,154)(103,158,108,153)(104,157,109,152)(105,156,110,151)(111,131,116,136)(112,140,117,135)(113,139,118,134)(114,138,119,133)(115,137,120,132)(121,149,126,144)(122,148,127,143)(123,147,128,142)(124,146,129,141)(125,145,130,150), (1,151,30,11)(2,152,21,12)(3,153,22,13)(4,154,23,14)(5,155,24,15)(6,156,25,16)(7,157,26,17)(8,158,27,18)(9,159,28,19)(10,160,29,20)(31,150,45,136)(32,141,46,137)(33,142,47,138)(34,143,48,139)(35,144,49,140)(36,145,50,131)(37,146,41,132)(38,147,42,133)(39,148,43,134)(40,149,44,135)(51,116,65,130)(52,117,66,121)(53,118,67,122)(54,119,68,123)(55,120,69,124)(56,111,70,125)(57,112,61,126)(58,113,62,127)(59,114,63,128)(60,115,64,129)(71,110,85,96)(72,101,86,97)(73,102,87,98)(74,103,88,99)(75,104,89,100)(76,105,90,91)(77,106,81,92)(78,107,82,93)(79,108,83,94)(80,109,84,95), (1,45,30,31)(2,46,21,32)(3,47,22,33)(4,48,23,34)(5,49,24,35)(6,50,25,36)(7,41,26,37)(8,42,27,38)(9,43,28,39)(10,44,29,40)(11,136,151,150)(12,137,152,141)(13,138,153,142)(14,139,154,143)(15,140,155,144)(16,131,156,145)(17,132,157,146)(18,133,158,147)(19,134,159,148)(20,135,160,149)(51,90,65,76)(52,81,66,77)(53,82,67,78)(54,83,68,79)(55,84,69,80)(56,85,70,71)(57,86,61,72)(58,87,62,73)(59,88,63,74)(60,89,64,75)(91,116,105,130)(92,117,106,121)(93,118,107,122)(94,119,108,123)(95,120,109,124)(96,111,110,125)(97,112,101,126)(98,113,102,127)(99,114,103,128)(100,115,104,129)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,31,25,50)(2,40,26,49)(3,39,27,48)(4,38,28,47)(5,37,29,46)(6,36,30,45)(7,35,21,44)(8,34,22,43)(9,33,23,42)(10,32,24,41)(11,131,156,150)(12,140,157,149)(13,139,158,148)(14,138,159,147)(15,137,160,146)(16,136,151,145)(17,135,152,144)(18,134,153,143)(19,133,154,142)(20,132,155,141)(51,90,70,71)(52,89,61,80)(53,88,62,79)(54,87,63,78)(55,86,64,77)(56,85,65,76)(57,84,66,75)(58,83,67,74)(59,82,68,73)(60,81,69,72)(91,130,110,111)(92,129,101,120)(93,128,102,119)(94,127,103,118)(95,126,104,117)(96,125,105,116)(97,124,106,115)(98,123,107,114)(99,122,108,113)(100,121,109,112), (1,71,6,76)(2,80,7,75)(3,79,8,74)(4,78,9,73)(5,77,10,72)(11,91,16,96)(12,100,17,95)(13,99,18,94)(14,98,19,93)(15,97,20,92)(21,84,26,89)(22,83,27,88)(23,82,28,87)(24,81,29,86)(25,90,30,85)(31,65,36,70)(32,64,37,69)(33,63,38,68)(34,62,39,67)(35,61,40,66)(41,55,46,60)(42,54,47,59)(43,53,48,58)(44,52,49,57)(45,51,50,56)(101,160,106,155)(102,159,107,154)(103,158,108,153)(104,157,109,152)(105,156,110,151)(111,131,116,136)(112,140,117,135)(113,139,118,134)(114,138,119,133)(115,137,120,132)(121,149,126,144)(122,148,127,143)(123,147,128,142)(124,146,129,141)(125,145,130,150), (1,151,30,11)(2,152,21,12)(3,153,22,13)(4,154,23,14)(5,155,24,15)(6,156,25,16)(7,157,26,17)(8,158,27,18)(9,159,28,19)(10,160,29,20)(31,150,45,136)(32,141,46,137)(33,142,47,138)(34,143,48,139)(35,144,49,140)(36,145,50,131)(37,146,41,132)(38,147,42,133)(39,148,43,134)(40,149,44,135)(51,116,65,130)(52,117,66,121)(53,118,67,122)(54,119,68,123)(55,120,69,124)(56,111,70,125)(57,112,61,126)(58,113,62,127)(59,114,63,128)(60,115,64,129)(71,110,85,96)(72,101,86,97)(73,102,87,98)(74,103,88,99)(75,104,89,100)(76,105,90,91)(77,106,81,92)(78,107,82,93)(79,108,83,94)(80,109,84,95), (1,45,30,31)(2,46,21,32)(3,47,22,33)(4,48,23,34)(5,49,24,35)(6,50,25,36)(7,41,26,37)(8,42,27,38)(9,43,28,39)(10,44,29,40)(11,136,151,150)(12,137,152,141)(13,138,153,142)(14,139,154,143)(15,140,155,144)(16,131,156,145)(17,132,157,146)(18,133,158,147)(19,134,159,148)(20,135,160,149)(51,90,65,76)(52,81,66,77)(53,82,67,78)(54,83,68,79)(55,84,69,80)(56,85,70,71)(57,86,61,72)(58,87,62,73)(59,88,63,74)(60,89,64,75)(91,116,105,130)(92,117,106,121)(93,118,107,122)(94,119,108,123)(95,120,109,124)(96,111,110,125)(97,112,101,126)(98,113,102,127)(99,114,103,128)(100,115,104,129) );
G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,31,25,50),(2,40,26,49),(3,39,27,48),(4,38,28,47),(5,37,29,46),(6,36,30,45),(7,35,21,44),(8,34,22,43),(9,33,23,42),(10,32,24,41),(11,131,156,150),(12,140,157,149),(13,139,158,148),(14,138,159,147),(15,137,160,146),(16,136,151,145),(17,135,152,144),(18,134,153,143),(19,133,154,142),(20,132,155,141),(51,90,70,71),(52,89,61,80),(53,88,62,79),(54,87,63,78),(55,86,64,77),(56,85,65,76),(57,84,66,75),(58,83,67,74),(59,82,68,73),(60,81,69,72),(91,130,110,111),(92,129,101,120),(93,128,102,119),(94,127,103,118),(95,126,104,117),(96,125,105,116),(97,124,106,115),(98,123,107,114),(99,122,108,113),(100,121,109,112)], [(1,71,6,76),(2,80,7,75),(3,79,8,74),(4,78,9,73),(5,77,10,72),(11,91,16,96),(12,100,17,95),(13,99,18,94),(14,98,19,93),(15,97,20,92),(21,84,26,89),(22,83,27,88),(23,82,28,87),(24,81,29,86),(25,90,30,85),(31,65,36,70),(32,64,37,69),(33,63,38,68),(34,62,39,67),(35,61,40,66),(41,55,46,60),(42,54,47,59),(43,53,48,58),(44,52,49,57),(45,51,50,56),(101,160,106,155),(102,159,107,154),(103,158,108,153),(104,157,109,152),(105,156,110,151),(111,131,116,136),(112,140,117,135),(113,139,118,134),(114,138,119,133),(115,137,120,132),(121,149,126,144),(122,148,127,143),(123,147,128,142),(124,146,129,141),(125,145,130,150)], [(1,151,30,11),(2,152,21,12),(3,153,22,13),(4,154,23,14),(5,155,24,15),(6,156,25,16),(7,157,26,17),(8,158,27,18),(9,159,28,19),(10,160,29,20),(31,150,45,136),(32,141,46,137),(33,142,47,138),(34,143,48,139),(35,144,49,140),(36,145,50,131),(37,146,41,132),(38,147,42,133),(39,148,43,134),(40,149,44,135),(51,116,65,130),(52,117,66,121),(53,118,67,122),(54,119,68,123),(55,120,69,124),(56,111,70,125),(57,112,61,126),(58,113,62,127),(59,114,63,128),(60,115,64,129),(71,110,85,96),(72,101,86,97),(73,102,87,98),(74,103,88,99),(75,104,89,100),(76,105,90,91),(77,106,81,92),(78,107,82,93),(79,108,83,94),(80,109,84,95)], [(1,45,30,31),(2,46,21,32),(3,47,22,33),(4,48,23,34),(5,49,24,35),(6,50,25,36),(7,41,26,37),(8,42,27,38),(9,43,28,39),(10,44,29,40),(11,136,151,150),(12,137,152,141),(13,138,153,142),(14,139,154,143),(15,140,155,144),(16,131,156,145),(17,132,157,146),(18,133,158,147),(19,134,159,148),(20,135,160,149),(51,90,65,76),(52,81,66,77),(53,82,67,78),(54,83,68,79),(55,84,69,80),(56,85,70,71),(57,86,61,72),(58,87,62,73),(59,88,63,74),(60,89,64,75),(91,116,105,130),(92,117,106,121),(93,118,107,122),(94,119,108,123),(95,120,109,124),(96,111,110,125),(97,112,101,126),(98,113,102,127),(99,114,103,128),(100,115,104,129)])
Matrix representation ►G ⊆ GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 35 | 0 | 0 |
0 | 0 | 7 | 35 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 35 |
0 | 0 | 0 | 0 | 7 | 35 |
40 | 40 | 0 | 0 | 0 | 0 |
2 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 35 | 5 | 0 | 0 |
0 | 0 | 34 | 6 | 0 | 0 |
0 | 0 | 12 | 31 | 6 | 36 |
0 | 0 | 14 | 29 | 7 | 35 |
1 | 1 | 0 | 0 | 0 | 0 |
39 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 21 | 38 | 0 | 0 |
0 | 0 | 38 | 20 | 0 | 0 |
0 | 0 | 40 | 6 | 20 | 3 |
0 | 0 | 6 | 1 | 3 | 21 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 27 | 40 | 0 |
0 | 0 | 30 | 33 | 0 | 40 |
0 | 0 | 27 | 28 | 35 | 14 |
0 | 0 | 22 | 14 | 11 | 8 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 39 | 0 | 40 | 0 |
0 | 0 | 0 | 39 | 0 | 40 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,7,0,0,0,0,35,35,0,0,0,0,0,0,0,7,0,0,0,0,35,35],[40,2,0,0,0,0,40,1,0,0,0,0,0,0,35,34,12,14,0,0,5,6,31,29,0,0,0,0,6,7,0,0,0,0,36,35],[1,39,0,0,0,0,1,40,0,0,0,0,0,0,21,38,40,6,0,0,38,20,6,1,0,0,0,0,20,3,0,0,0,0,3,21],[1,0,0,0,0,0,1,40,0,0,0,0,0,0,6,30,27,22,0,0,27,33,28,14,0,0,40,0,35,11,0,0,0,40,14,8],[1,0,0,0,0,0,1,40,0,0,0,0,0,0,1,0,39,0,0,0,0,1,0,39,0,0,1,0,40,0,0,0,0,1,0,40] >;
62 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | ··· | 4N | 5A | 5B | 10A | ··· | 10N | 20A | ··· | 20X |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 20 | 20 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 20 | ··· | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
62 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D5 | D10 | D10 | C5⋊D4 | 2- (1+4) | Q8.10D10 |
kernel | C10.442- (1+4) | C23.21D10 | C23.23D10 | Dic5⋊Q8 | D10⋊3Q8 | C20.23D4 | C2×C4○D20 | Q8×C2×C10 | C2×C20 | C22×Q8 | C22×C4 | C2×Q8 | C2×C4 | C10 | C2 |
# reps | 1 | 1 | 4 | 2 | 4 | 2 | 1 | 1 | 4 | 2 | 6 | 8 | 16 | 2 | 8 |
In GAP, Magma, Sage, TeX
C_{10}._{44}2_-^{(1+4)}
% in TeX
G:=Group("C10.44ES-(2,2)");
// GroupNames label
G:=SmallGroup(320,1488);
// by ID
G=gap.SmallGroup(320,1488);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,675,570,136,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^10=b^4=1,c^2=a^5,d^2=e^2=a^5*b^2,b*a*b^-1=c*a*c^-1=a^-1,a*d=d*a,a*e=e*a,c*b*c^-1=a^5*b^-1,d*b*d^-1=e*b*e^-1=a^5*b,d*c*d^-1=e*c*e^-1=a^5*c,e*d*e^-1=a^5*b^2*d>;
// generators/relations