direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C4×Q8⋊2D5, C42.231D10, Q8⋊8(C4×D5), (Q8×C20)⋊8C2, (C4×Q8)⋊19D5, D20⋊24(C2×C4), (C4×D20)⋊36C2, (D5×C42)⋊6C2, C20⋊18(C4○D4), C4⋊C4.324D10, (Q8×Dic5)⋊32C2, D20⋊8C4⋊47C2, C20.71(C22×C4), C10.47(C23×C4), (C2×Q8).201D10, Dic5⋊12(C4○D4), (C2×C10).117C24, (C2×C20).496C23, (C4×C20).169C22, D10.19(C22×C4), C22.36(C23×D5), (C2×D20).269C22, C4⋊Dic5.367C22, (Q8×C10).217C22, Dic5.55(C22×C4), (C2×Dic5).223C23, (C4×Dic5).283C22, (C22×D5).186C23, D10⋊C4.125C22, C5⋊5(C4×C4○D4), C4.36(C2×C4×D5), C2.6(D5×C4○D4), (C4×D5)⋊12(C2×C4), (C5×Q8)⋊20(C2×C4), C4⋊C4⋊7D5⋊47C2, C2.28(D5×C22×C4), C2.3(C2×Q8⋊2D5), C10.111(C2×C4○D4), (C2×C4×D5).316C22, (C5×C4⋊C4).345C22, (C2×Q8⋊2D5).15C2, (C2×C4).821(C22×D5), SmallGroup(320,1245)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 958 in 310 conjugacy classes, 157 normal (22 characteristic)
C1, C2 [×3], C2 [×6], C4 [×8], C4 [×10], C22, C22 [×12], C5, C2×C4, C2×C4 [×6], C2×C4 [×29], D4 [×12], Q8 [×4], C23 [×3], D5 [×6], C10 [×3], C42 [×3], C42 [×7], C22⋊C4 [×6], C4⋊C4 [×3], C4⋊C4 [×3], C22×C4 [×9], C2×D4 [×3], C2×Q8, C4○D4 [×8], Dic5 [×4], Dic5 [×3], C20 [×8], C20 [×3], D10 [×6], D10 [×6], C2×C10, C2×C42 [×3], C42⋊C2 [×3], C4×D4 [×6], C4×Q8, C4×Q8, C2×C4○D4, C4×D5 [×12], C4×D5 [×12], D20 [×12], C2×Dic5 [×2], C2×Dic5 [×3], C2×C20, C2×C20 [×6], C5×Q8 [×4], C22×D5 [×3], C4×C4○D4, C4×Dic5, C4×Dic5 [×6], C4⋊Dic5 [×3], D10⋊C4 [×6], C4×C20 [×3], C5×C4⋊C4 [×3], C2×C4×D5 [×9], C2×D20 [×3], Q8⋊2D5 [×8], Q8×C10, D5×C42 [×3], C4×D20 [×3], C4⋊C4⋊7D5 [×3], D20⋊8C4 [×3], Q8×Dic5, Q8×C20, C2×Q8⋊2D5, C4×Q8⋊2D5
Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], C23 [×15], D5, C22×C4 [×14], C4○D4 [×4], C24, D10 [×7], C23×C4, C2×C4○D4 [×2], C4×D5 [×4], C22×D5 [×7], C4×C4○D4, C2×C4×D5 [×6], Q8⋊2D5 [×2], C23×D5, D5×C22×C4, C2×Q8⋊2D5, D5×C4○D4, C4×Q8⋊2D5
Generators and relations
G = < a,b,c,d,e | a4=b4=d5=e2=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=ebe=b-1, bd=db, cd=dc, ce=ec, ede=d-1 >
(1 31 11 21)(2 32 12 22)(3 33 13 23)(4 34 14 24)(5 35 15 25)(6 36 16 26)(7 37 17 27)(8 38 18 28)(9 39 19 29)(10 40 20 30)(41 71 51 61)(42 72 52 62)(43 73 53 63)(44 74 54 64)(45 75 55 65)(46 76 56 66)(47 77 57 67)(48 78 58 68)(49 79 59 69)(50 80 60 70)(81 111 91 101)(82 112 92 102)(83 113 93 103)(84 114 94 104)(85 115 95 105)(86 116 96 106)(87 117 97 107)(88 118 98 108)(89 119 99 109)(90 120 100 110)(121 151 131 141)(122 152 132 142)(123 153 133 143)(124 154 134 144)(125 155 135 145)(126 156 136 146)(127 157 137 147)(128 158 138 148)(129 159 139 149)(130 160 140 150)
(1 46 6 41)(2 47 7 42)(3 48 8 43)(4 49 9 44)(5 50 10 45)(11 56 16 51)(12 57 17 52)(13 58 18 53)(14 59 19 54)(15 60 20 55)(21 66 26 61)(22 67 27 62)(23 68 28 63)(24 69 29 64)(25 70 30 65)(31 76 36 71)(32 77 37 72)(33 78 38 73)(34 79 39 74)(35 80 40 75)(81 121 86 126)(82 122 87 127)(83 123 88 128)(84 124 89 129)(85 125 90 130)(91 131 96 136)(92 132 97 137)(93 133 98 138)(94 134 99 139)(95 135 100 140)(101 141 106 146)(102 142 107 147)(103 143 108 148)(104 144 109 149)(105 145 110 150)(111 151 116 156)(112 152 117 157)(113 153 118 158)(114 154 119 159)(115 155 120 160)
(1 96 6 91)(2 97 7 92)(3 98 8 93)(4 99 9 94)(5 100 10 95)(11 86 16 81)(12 87 17 82)(13 88 18 83)(14 89 19 84)(15 90 20 85)(21 116 26 111)(22 117 27 112)(23 118 28 113)(24 119 29 114)(25 120 30 115)(31 106 36 101)(32 107 37 102)(33 108 38 103)(34 109 39 104)(35 110 40 105)(41 136 46 131)(42 137 47 132)(43 138 48 133)(44 139 49 134)(45 140 50 135)(51 126 56 121)(52 127 57 122)(53 128 58 123)(54 129 59 124)(55 130 60 125)(61 156 66 151)(62 157 67 152)(63 158 68 153)(64 159 69 154)(65 160 70 155)(71 146 76 141)(72 147 77 142)(73 148 78 143)(74 149 79 144)(75 150 80 145)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 55)(2 54)(3 53)(4 52)(5 51)(6 60)(7 59)(8 58)(9 57)(10 56)(11 45)(12 44)(13 43)(14 42)(15 41)(16 50)(17 49)(18 48)(19 47)(20 46)(21 75)(22 74)(23 73)(24 72)(25 71)(26 80)(27 79)(28 78)(29 77)(30 76)(31 65)(32 64)(33 63)(34 62)(35 61)(36 70)(37 69)(38 68)(39 67)(40 66)(81 135)(82 134)(83 133)(84 132)(85 131)(86 140)(87 139)(88 138)(89 137)(90 136)(91 125)(92 124)(93 123)(94 122)(95 121)(96 130)(97 129)(98 128)(99 127)(100 126)(101 155)(102 154)(103 153)(104 152)(105 151)(106 160)(107 159)(108 158)(109 157)(110 156)(111 145)(112 144)(113 143)(114 142)(115 141)(116 150)(117 149)(118 148)(119 147)(120 146)
G:=sub<Sym(160)| (1,31,11,21)(2,32,12,22)(3,33,13,23)(4,34,14,24)(5,35,15,25)(6,36,16,26)(7,37,17,27)(8,38,18,28)(9,39,19,29)(10,40,20,30)(41,71,51,61)(42,72,52,62)(43,73,53,63)(44,74,54,64)(45,75,55,65)(46,76,56,66)(47,77,57,67)(48,78,58,68)(49,79,59,69)(50,80,60,70)(81,111,91,101)(82,112,92,102)(83,113,93,103)(84,114,94,104)(85,115,95,105)(86,116,96,106)(87,117,97,107)(88,118,98,108)(89,119,99,109)(90,120,100,110)(121,151,131,141)(122,152,132,142)(123,153,133,143)(124,154,134,144)(125,155,135,145)(126,156,136,146)(127,157,137,147)(128,158,138,148)(129,159,139,149)(130,160,140,150), (1,46,6,41)(2,47,7,42)(3,48,8,43)(4,49,9,44)(5,50,10,45)(11,56,16,51)(12,57,17,52)(13,58,18,53)(14,59,19,54)(15,60,20,55)(21,66,26,61)(22,67,27,62)(23,68,28,63)(24,69,29,64)(25,70,30,65)(31,76,36,71)(32,77,37,72)(33,78,38,73)(34,79,39,74)(35,80,40,75)(81,121,86,126)(82,122,87,127)(83,123,88,128)(84,124,89,129)(85,125,90,130)(91,131,96,136)(92,132,97,137)(93,133,98,138)(94,134,99,139)(95,135,100,140)(101,141,106,146)(102,142,107,147)(103,143,108,148)(104,144,109,149)(105,145,110,150)(111,151,116,156)(112,152,117,157)(113,153,118,158)(114,154,119,159)(115,155,120,160), (1,96,6,91)(2,97,7,92)(3,98,8,93)(4,99,9,94)(5,100,10,95)(11,86,16,81)(12,87,17,82)(13,88,18,83)(14,89,19,84)(15,90,20,85)(21,116,26,111)(22,117,27,112)(23,118,28,113)(24,119,29,114)(25,120,30,115)(31,106,36,101)(32,107,37,102)(33,108,38,103)(34,109,39,104)(35,110,40,105)(41,136,46,131)(42,137,47,132)(43,138,48,133)(44,139,49,134)(45,140,50,135)(51,126,56,121)(52,127,57,122)(53,128,58,123)(54,129,59,124)(55,130,60,125)(61,156,66,151)(62,157,67,152)(63,158,68,153)(64,159,69,154)(65,160,70,155)(71,146,76,141)(72,147,77,142)(73,148,78,143)(74,149,79,144)(75,150,80,145), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,55)(2,54)(3,53)(4,52)(5,51)(6,60)(7,59)(8,58)(9,57)(10,56)(11,45)(12,44)(13,43)(14,42)(15,41)(16,50)(17,49)(18,48)(19,47)(20,46)(21,75)(22,74)(23,73)(24,72)(25,71)(26,80)(27,79)(28,78)(29,77)(30,76)(31,65)(32,64)(33,63)(34,62)(35,61)(36,70)(37,69)(38,68)(39,67)(40,66)(81,135)(82,134)(83,133)(84,132)(85,131)(86,140)(87,139)(88,138)(89,137)(90,136)(91,125)(92,124)(93,123)(94,122)(95,121)(96,130)(97,129)(98,128)(99,127)(100,126)(101,155)(102,154)(103,153)(104,152)(105,151)(106,160)(107,159)(108,158)(109,157)(110,156)(111,145)(112,144)(113,143)(114,142)(115,141)(116,150)(117,149)(118,148)(119,147)(120,146)>;
G:=Group( (1,31,11,21)(2,32,12,22)(3,33,13,23)(4,34,14,24)(5,35,15,25)(6,36,16,26)(7,37,17,27)(8,38,18,28)(9,39,19,29)(10,40,20,30)(41,71,51,61)(42,72,52,62)(43,73,53,63)(44,74,54,64)(45,75,55,65)(46,76,56,66)(47,77,57,67)(48,78,58,68)(49,79,59,69)(50,80,60,70)(81,111,91,101)(82,112,92,102)(83,113,93,103)(84,114,94,104)(85,115,95,105)(86,116,96,106)(87,117,97,107)(88,118,98,108)(89,119,99,109)(90,120,100,110)(121,151,131,141)(122,152,132,142)(123,153,133,143)(124,154,134,144)(125,155,135,145)(126,156,136,146)(127,157,137,147)(128,158,138,148)(129,159,139,149)(130,160,140,150), (1,46,6,41)(2,47,7,42)(3,48,8,43)(4,49,9,44)(5,50,10,45)(11,56,16,51)(12,57,17,52)(13,58,18,53)(14,59,19,54)(15,60,20,55)(21,66,26,61)(22,67,27,62)(23,68,28,63)(24,69,29,64)(25,70,30,65)(31,76,36,71)(32,77,37,72)(33,78,38,73)(34,79,39,74)(35,80,40,75)(81,121,86,126)(82,122,87,127)(83,123,88,128)(84,124,89,129)(85,125,90,130)(91,131,96,136)(92,132,97,137)(93,133,98,138)(94,134,99,139)(95,135,100,140)(101,141,106,146)(102,142,107,147)(103,143,108,148)(104,144,109,149)(105,145,110,150)(111,151,116,156)(112,152,117,157)(113,153,118,158)(114,154,119,159)(115,155,120,160), (1,96,6,91)(2,97,7,92)(3,98,8,93)(4,99,9,94)(5,100,10,95)(11,86,16,81)(12,87,17,82)(13,88,18,83)(14,89,19,84)(15,90,20,85)(21,116,26,111)(22,117,27,112)(23,118,28,113)(24,119,29,114)(25,120,30,115)(31,106,36,101)(32,107,37,102)(33,108,38,103)(34,109,39,104)(35,110,40,105)(41,136,46,131)(42,137,47,132)(43,138,48,133)(44,139,49,134)(45,140,50,135)(51,126,56,121)(52,127,57,122)(53,128,58,123)(54,129,59,124)(55,130,60,125)(61,156,66,151)(62,157,67,152)(63,158,68,153)(64,159,69,154)(65,160,70,155)(71,146,76,141)(72,147,77,142)(73,148,78,143)(74,149,79,144)(75,150,80,145), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,55)(2,54)(3,53)(4,52)(5,51)(6,60)(7,59)(8,58)(9,57)(10,56)(11,45)(12,44)(13,43)(14,42)(15,41)(16,50)(17,49)(18,48)(19,47)(20,46)(21,75)(22,74)(23,73)(24,72)(25,71)(26,80)(27,79)(28,78)(29,77)(30,76)(31,65)(32,64)(33,63)(34,62)(35,61)(36,70)(37,69)(38,68)(39,67)(40,66)(81,135)(82,134)(83,133)(84,132)(85,131)(86,140)(87,139)(88,138)(89,137)(90,136)(91,125)(92,124)(93,123)(94,122)(95,121)(96,130)(97,129)(98,128)(99,127)(100,126)(101,155)(102,154)(103,153)(104,152)(105,151)(106,160)(107,159)(108,158)(109,157)(110,156)(111,145)(112,144)(113,143)(114,142)(115,141)(116,150)(117,149)(118,148)(119,147)(120,146) );
G=PermutationGroup([(1,31,11,21),(2,32,12,22),(3,33,13,23),(4,34,14,24),(5,35,15,25),(6,36,16,26),(7,37,17,27),(8,38,18,28),(9,39,19,29),(10,40,20,30),(41,71,51,61),(42,72,52,62),(43,73,53,63),(44,74,54,64),(45,75,55,65),(46,76,56,66),(47,77,57,67),(48,78,58,68),(49,79,59,69),(50,80,60,70),(81,111,91,101),(82,112,92,102),(83,113,93,103),(84,114,94,104),(85,115,95,105),(86,116,96,106),(87,117,97,107),(88,118,98,108),(89,119,99,109),(90,120,100,110),(121,151,131,141),(122,152,132,142),(123,153,133,143),(124,154,134,144),(125,155,135,145),(126,156,136,146),(127,157,137,147),(128,158,138,148),(129,159,139,149),(130,160,140,150)], [(1,46,6,41),(2,47,7,42),(3,48,8,43),(4,49,9,44),(5,50,10,45),(11,56,16,51),(12,57,17,52),(13,58,18,53),(14,59,19,54),(15,60,20,55),(21,66,26,61),(22,67,27,62),(23,68,28,63),(24,69,29,64),(25,70,30,65),(31,76,36,71),(32,77,37,72),(33,78,38,73),(34,79,39,74),(35,80,40,75),(81,121,86,126),(82,122,87,127),(83,123,88,128),(84,124,89,129),(85,125,90,130),(91,131,96,136),(92,132,97,137),(93,133,98,138),(94,134,99,139),(95,135,100,140),(101,141,106,146),(102,142,107,147),(103,143,108,148),(104,144,109,149),(105,145,110,150),(111,151,116,156),(112,152,117,157),(113,153,118,158),(114,154,119,159),(115,155,120,160)], [(1,96,6,91),(2,97,7,92),(3,98,8,93),(4,99,9,94),(5,100,10,95),(11,86,16,81),(12,87,17,82),(13,88,18,83),(14,89,19,84),(15,90,20,85),(21,116,26,111),(22,117,27,112),(23,118,28,113),(24,119,29,114),(25,120,30,115),(31,106,36,101),(32,107,37,102),(33,108,38,103),(34,109,39,104),(35,110,40,105),(41,136,46,131),(42,137,47,132),(43,138,48,133),(44,139,49,134),(45,140,50,135),(51,126,56,121),(52,127,57,122),(53,128,58,123),(54,129,59,124),(55,130,60,125),(61,156,66,151),(62,157,67,152),(63,158,68,153),(64,159,69,154),(65,160,70,155),(71,146,76,141),(72,147,77,142),(73,148,78,143),(74,149,79,144),(75,150,80,145)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,55),(2,54),(3,53),(4,52),(5,51),(6,60),(7,59),(8,58),(9,57),(10,56),(11,45),(12,44),(13,43),(14,42),(15,41),(16,50),(17,49),(18,48),(19,47),(20,46),(21,75),(22,74),(23,73),(24,72),(25,71),(26,80),(27,79),(28,78),(29,77),(30,76),(31,65),(32,64),(33,63),(34,62),(35,61),(36,70),(37,69),(38,68),(39,67),(40,66),(81,135),(82,134),(83,133),(84,132),(85,131),(86,140),(87,139),(88,138),(89,137),(90,136),(91,125),(92,124),(93,123),(94,122),(95,121),(96,130),(97,129),(98,128),(99,127),(100,126),(101,155),(102,154),(103,153),(104,152),(105,151),(106,160),(107,159),(108,158),(109,157),(110,156),(111,145),(112,144),(113,143),(114,142),(115,141),(116,150),(117,149),(118,148),(119,147),(120,146)])
Matrix representation ►G ⊆ GL4(𝔽41) generated by
32 | 0 | 0 | 0 |
0 | 32 | 0 | 0 |
0 | 0 | 32 | 0 |
0 | 0 | 0 | 32 |
40 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 40 | 0 |
40 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 0 | 32 |
0 | 0 | 32 | 0 |
34 | 40 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
34 | 40 | 0 | 0 |
7 | 7 | 0 | 0 |
0 | 0 | 0 | 40 |
0 | 0 | 40 | 0 |
G:=sub<GL(4,GF(41))| [32,0,0,0,0,32,0,0,0,0,32,0,0,0,0,32],[40,0,0,0,0,40,0,0,0,0,0,40,0,0,1,0],[40,0,0,0,0,40,0,0,0,0,0,32,0,0,32,0],[34,1,0,0,40,0,0,0,0,0,1,0,0,0,0,1],[34,7,0,0,40,7,0,0,0,0,0,40,0,0,40,0] >;
80 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 4A | 4B | 4C | 4D | 4E | ··· | 4P | 4Q | ··· | 4X | 4Y | ··· | 4AD | 5A | 5B | 10A | ··· | 10F | 20A | ··· | 20H | 20I | ··· | 20AF |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 10 | ··· | 10 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 5 | ··· | 5 | 10 | ··· | 10 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
80 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | D5 | C4○D4 | C4○D4 | D10 | D10 | D10 | C4×D5 | Q8⋊2D5 | D5×C4○D4 |
kernel | C4×Q8⋊2D5 | D5×C42 | C4×D20 | C4⋊C4⋊7D5 | D20⋊8C4 | Q8×Dic5 | Q8×C20 | C2×Q8⋊2D5 | Q8⋊2D5 | C4×Q8 | Dic5 | C20 | C42 | C4⋊C4 | C2×Q8 | Q8 | C4 | C2 |
# reps | 1 | 3 | 3 | 3 | 3 | 1 | 1 | 1 | 16 | 2 | 4 | 4 | 6 | 6 | 2 | 16 | 4 | 4 |
In GAP, Magma, Sage, TeX
C_4\times Q_8\rtimes_2D_5
% in TeX
G:=Group("C4xQ8:2D5");
// GroupNames label
G:=SmallGroup(320,1245);
// by ID
G=gap.SmallGroup(320,1245);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,387,184,80,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=d^5=e^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=e*b*e=b^-1,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations