metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C5⋊C8⋊8D4, C5⋊D4⋊C8, C5⋊1(C8×D4), Dic5⋊(C2×C8), C2.1(D4×F5), D10⋊1(C2×C8), C10.1(C4×D4), C22⋊C4.8F5, C22⋊1(D5⋊C8), C10.2(C8○D4), C10.5(C22×C8), D10⋊C8⋊11C2, C2.2(D4.F5), C23.24(C2×F5), D10⋊C4.5C4, Dic5.65(C2×D4), C10.D4.6C4, C23.2F5⋊3C2, Dic5⋊C8⋊12C2, Dic5.50(C4○D4), Dic5⋊4D4.10C2, C22.34(C22×F5), (C2×Dic5).322C23, (C4×Dic5).247C22, (C22×Dic5).177C22, (C4×C5⋊C8)⋊11C2, (C2×C10)⋊1(C2×C8), (C2×D5⋊C8)⋊8C2, (C22×C5⋊C8)⋊1C2, C2.7(C2×D5⋊C8), (C2×C5⋊D4).3C4, (C2×C4).57(C2×F5), (C2×C20).90(C2×C4), (C5×C22⋊C4).8C4, (C2×C5⋊C8).20C22, (C2×C4×D5).286C22, (C2×C10).30(C22×C4), (C22×C10).13(C2×C4), (C2×Dic5).47(C2×C4), (C22×D5).39(C2×C4), SmallGroup(320,1030)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — Dic5 — C2×Dic5 — C2×C5⋊C8 — C22×C5⋊C8 — C5⋊C8⋊8D4 |
Subgroups: 442 in 134 conjugacy classes, 56 normal (42 characteristic)
C1, C2 [×3], C2 [×4], C4 [×7], C22, C22 [×2], C22 [×6], C5, C8 [×5], C2×C4 [×2], C2×C4 [×7], D4 [×4], C23, C23, D5 [×2], C10 [×3], C10 [×2], C42, C22⋊C4, C22⋊C4, C4⋊C4, C2×C8 [×8], C22×C4 [×2], C2×D4, Dic5 [×2], Dic5 [×2], Dic5, C20 [×2], D10 [×2], D10 [×2], C2×C10, C2×C10 [×2], C2×C10 [×2], C4×C8, C22⋊C8 [×2], C4⋊C8, C4×D4, C22×C8 [×2], C5⋊C8 [×2], C5⋊C8 [×3], C4×D5 [×2], C2×Dic5 [×3], C2×Dic5 [×2], C5⋊D4 [×4], C2×C20 [×2], C22×D5, C22×C10, C8×D4, C4×Dic5, C10.D4, D10⋊C4, C5×C22⋊C4, D5⋊C8 [×2], C2×C5⋊C8 [×4], C2×C5⋊C8 [×2], C2×C4×D5, C22×Dic5, C2×C5⋊D4, C4×C5⋊C8, D10⋊C8, Dic5⋊C8, C23.2F5, Dic5⋊4D4, C2×D5⋊C8, C22×C5⋊C8, C5⋊C8⋊8D4
Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], C8 [×4], C2×C4 [×6], D4 [×2], C23, C2×C8 [×6], C22×C4, C2×D4, C4○D4, F5, C4×D4, C22×C8, C8○D4, C2×F5 [×3], C8×D4, D5⋊C8 [×2], C22×F5, C2×D5⋊C8, D4.F5, D4×F5, C5⋊C8⋊8D4
Generators and relations
G = < a,b,c,d | a5=b8=c4=d2=1, bab-1=a3, cac-1=a-1, ad=da, bc=cb, bd=db, dcd=c-1 >
(1 12 132 143 38)(2 144 13 39 133)(3 40 137 134 14)(4 135 33 15 138)(5 16 136 139 34)(6 140 9 35 129)(7 36 141 130 10)(8 131 37 11 142)(17 65 128 88 51)(18 81 66 52 121)(19 53 82 122 67)(20 123 54 68 83)(21 69 124 84 55)(22 85 70 56 125)(23 49 86 126 71)(24 127 50 72 87)(25 116 90 109 102)(26 110 117 103 91)(27 104 111 92 118)(28 93 97 119 112)(29 120 94 105 98)(30 106 113 99 95)(31 100 107 96 114)(32 89 101 115 108)(41 149 73 63 157)(42 64 150 158 74)(43 159 57 75 151)(44 76 160 152 58)(45 145 77 59 153)(46 60 146 154 78)(47 155 61 79 147)(48 80 156 148 62)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(1 98 57 52)(2 99 58 53)(3 100 59 54)(4 101 60 55)(5 102 61 56)(6 103 62 49)(7 104 63 50)(8 97 64 51)(9 110 80 71)(10 111 73 72)(11 112 74 65)(12 105 75 66)(13 106 76 67)(14 107 77 68)(15 108 78 69)(16 109 79 70)(17 142 119 42)(18 143 120 43)(19 144 113 44)(20 137 114 45)(21 138 115 46)(22 139 116 47)(23 140 117 48)(24 141 118 41)(25 155 125 34)(26 156 126 35)(27 157 127 36)(28 158 128 37)(29 159 121 38)(30 160 122 39)(31 153 123 40)(32 154 124 33)(81 132 94 151)(82 133 95 152)(83 134 96 145)(84 135 89 146)(85 136 90 147)(86 129 91 148)(87 130 92 149)(88 131 93 150)
(1 52)(2 53)(3 54)(4 55)(5 56)(6 49)(7 50)(8 51)(9 126)(10 127)(11 128)(12 121)(13 122)(14 123)(15 124)(16 125)(17 131)(18 132)(19 133)(20 134)(21 135)(22 136)(23 129)(24 130)(25 79)(26 80)(27 73)(28 74)(29 75)(30 76)(31 77)(32 78)(33 69)(34 70)(35 71)(36 72)(37 65)(38 66)(39 67)(40 68)(41 92)(42 93)(43 94)(44 95)(45 96)(46 89)(47 90)(48 91)(57 98)(58 99)(59 100)(60 101)(61 102)(62 103)(63 104)(64 97)(81 143)(82 144)(83 137)(84 138)(85 139)(86 140)(87 141)(88 142)(105 159)(106 160)(107 153)(108 154)(109 155)(110 156)(111 157)(112 158)(113 152)(114 145)(115 146)(116 147)(117 148)(118 149)(119 150)(120 151)
G:=sub<Sym(160)| (1,12,132,143,38)(2,144,13,39,133)(3,40,137,134,14)(4,135,33,15,138)(5,16,136,139,34)(6,140,9,35,129)(7,36,141,130,10)(8,131,37,11,142)(17,65,128,88,51)(18,81,66,52,121)(19,53,82,122,67)(20,123,54,68,83)(21,69,124,84,55)(22,85,70,56,125)(23,49,86,126,71)(24,127,50,72,87)(25,116,90,109,102)(26,110,117,103,91)(27,104,111,92,118)(28,93,97,119,112)(29,120,94,105,98)(30,106,113,99,95)(31,100,107,96,114)(32,89,101,115,108)(41,149,73,63,157)(42,64,150,158,74)(43,159,57,75,151)(44,76,160,152,58)(45,145,77,59,153)(46,60,146,154,78)(47,155,61,79,147)(48,80,156,148,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,98,57,52)(2,99,58,53)(3,100,59,54)(4,101,60,55)(5,102,61,56)(6,103,62,49)(7,104,63,50)(8,97,64,51)(9,110,80,71)(10,111,73,72)(11,112,74,65)(12,105,75,66)(13,106,76,67)(14,107,77,68)(15,108,78,69)(16,109,79,70)(17,142,119,42)(18,143,120,43)(19,144,113,44)(20,137,114,45)(21,138,115,46)(22,139,116,47)(23,140,117,48)(24,141,118,41)(25,155,125,34)(26,156,126,35)(27,157,127,36)(28,158,128,37)(29,159,121,38)(30,160,122,39)(31,153,123,40)(32,154,124,33)(81,132,94,151)(82,133,95,152)(83,134,96,145)(84,135,89,146)(85,136,90,147)(86,129,91,148)(87,130,92,149)(88,131,93,150), (1,52)(2,53)(3,54)(4,55)(5,56)(6,49)(7,50)(8,51)(9,126)(10,127)(11,128)(12,121)(13,122)(14,123)(15,124)(16,125)(17,131)(18,132)(19,133)(20,134)(21,135)(22,136)(23,129)(24,130)(25,79)(26,80)(27,73)(28,74)(29,75)(30,76)(31,77)(32,78)(33,69)(34,70)(35,71)(36,72)(37,65)(38,66)(39,67)(40,68)(41,92)(42,93)(43,94)(44,95)(45,96)(46,89)(47,90)(48,91)(57,98)(58,99)(59,100)(60,101)(61,102)(62,103)(63,104)(64,97)(81,143)(82,144)(83,137)(84,138)(85,139)(86,140)(87,141)(88,142)(105,159)(106,160)(107,153)(108,154)(109,155)(110,156)(111,157)(112,158)(113,152)(114,145)(115,146)(116,147)(117,148)(118,149)(119,150)(120,151)>;
G:=Group( (1,12,132,143,38)(2,144,13,39,133)(3,40,137,134,14)(4,135,33,15,138)(5,16,136,139,34)(6,140,9,35,129)(7,36,141,130,10)(8,131,37,11,142)(17,65,128,88,51)(18,81,66,52,121)(19,53,82,122,67)(20,123,54,68,83)(21,69,124,84,55)(22,85,70,56,125)(23,49,86,126,71)(24,127,50,72,87)(25,116,90,109,102)(26,110,117,103,91)(27,104,111,92,118)(28,93,97,119,112)(29,120,94,105,98)(30,106,113,99,95)(31,100,107,96,114)(32,89,101,115,108)(41,149,73,63,157)(42,64,150,158,74)(43,159,57,75,151)(44,76,160,152,58)(45,145,77,59,153)(46,60,146,154,78)(47,155,61,79,147)(48,80,156,148,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,98,57,52)(2,99,58,53)(3,100,59,54)(4,101,60,55)(5,102,61,56)(6,103,62,49)(7,104,63,50)(8,97,64,51)(9,110,80,71)(10,111,73,72)(11,112,74,65)(12,105,75,66)(13,106,76,67)(14,107,77,68)(15,108,78,69)(16,109,79,70)(17,142,119,42)(18,143,120,43)(19,144,113,44)(20,137,114,45)(21,138,115,46)(22,139,116,47)(23,140,117,48)(24,141,118,41)(25,155,125,34)(26,156,126,35)(27,157,127,36)(28,158,128,37)(29,159,121,38)(30,160,122,39)(31,153,123,40)(32,154,124,33)(81,132,94,151)(82,133,95,152)(83,134,96,145)(84,135,89,146)(85,136,90,147)(86,129,91,148)(87,130,92,149)(88,131,93,150), (1,52)(2,53)(3,54)(4,55)(5,56)(6,49)(7,50)(8,51)(9,126)(10,127)(11,128)(12,121)(13,122)(14,123)(15,124)(16,125)(17,131)(18,132)(19,133)(20,134)(21,135)(22,136)(23,129)(24,130)(25,79)(26,80)(27,73)(28,74)(29,75)(30,76)(31,77)(32,78)(33,69)(34,70)(35,71)(36,72)(37,65)(38,66)(39,67)(40,68)(41,92)(42,93)(43,94)(44,95)(45,96)(46,89)(47,90)(48,91)(57,98)(58,99)(59,100)(60,101)(61,102)(62,103)(63,104)(64,97)(81,143)(82,144)(83,137)(84,138)(85,139)(86,140)(87,141)(88,142)(105,159)(106,160)(107,153)(108,154)(109,155)(110,156)(111,157)(112,158)(113,152)(114,145)(115,146)(116,147)(117,148)(118,149)(119,150)(120,151) );
G=PermutationGroup([(1,12,132,143,38),(2,144,13,39,133),(3,40,137,134,14),(4,135,33,15,138),(5,16,136,139,34),(6,140,9,35,129),(7,36,141,130,10),(8,131,37,11,142),(17,65,128,88,51),(18,81,66,52,121),(19,53,82,122,67),(20,123,54,68,83),(21,69,124,84,55),(22,85,70,56,125),(23,49,86,126,71),(24,127,50,72,87),(25,116,90,109,102),(26,110,117,103,91),(27,104,111,92,118),(28,93,97,119,112),(29,120,94,105,98),(30,106,113,99,95),(31,100,107,96,114),(32,89,101,115,108),(41,149,73,63,157),(42,64,150,158,74),(43,159,57,75,151),(44,76,160,152,58),(45,145,77,59,153),(46,60,146,154,78),(47,155,61,79,147),(48,80,156,148,62)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(1,98,57,52),(2,99,58,53),(3,100,59,54),(4,101,60,55),(5,102,61,56),(6,103,62,49),(7,104,63,50),(8,97,64,51),(9,110,80,71),(10,111,73,72),(11,112,74,65),(12,105,75,66),(13,106,76,67),(14,107,77,68),(15,108,78,69),(16,109,79,70),(17,142,119,42),(18,143,120,43),(19,144,113,44),(20,137,114,45),(21,138,115,46),(22,139,116,47),(23,140,117,48),(24,141,118,41),(25,155,125,34),(26,156,126,35),(27,157,127,36),(28,158,128,37),(29,159,121,38),(30,160,122,39),(31,153,123,40),(32,154,124,33),(81,132,94,151),(82,133,95,152),(83,134,96,145),(84,135,89,146),(85,136,90,147),(86,129,91,148),(87,130,92,149),(88,131,93,150)], [(1,52),(2,53),(3,54),(4,55),(5,56),(6,49),(7,50),(8,51),(9,126),(10,127),(11,128),(12,121),(13,122),(14,123),(15,124),(16,125),(17,131),(18,132),(19,133),(20,134),(21,135),(22,136),(23,129),(24,130),(25,79),(26,80),(27,73),(28,74),(29,75),(30,76),(31,77),(32,78),(33,69),(34,70),(35,71),(36,72),(37,65),(38,66),(39,67),(40,68),(41,92),(42,93),(43,94),(44,95),(45,96),(46,89),(47,90),(48,91),(57,98),(58,99),(59,100),(60,101),(61,102),(62,103),(63,104),(64,97),(81,143),(82,144),(83,137),(84,138),(85,139),(86,140),(87,141),(88,142),(105,159),(106,160),(107,153),(108,154),(109,155),(110,156),(111,157),(112,158),(113,152),(114,145),(115,146),(116,147),(117,148),(118,149),(119,150),(120,151)])
Matrix representation ►G ⊆ GL6(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 1 | 0 | 0 | 40 |
0 | 0 | 0 | 1 | 0 | 40 |
0 | 0 | 0 | 0 | 1 | 40 |
9 | 0 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 19 | 0 | 22 | 21 |
0 | 0 | 0 | 21 | 1 | 40 |
0 | 0 | 20 | 40 | 1 | 21 |
0 | 0 | 20 | 21 | 22 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 40 |
0 | 0 | 0 | 1 | 40 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,40,40,40],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,19,0,20,20,0,0,0,21,40,21,0,0,22,1,1,22,0,0,21,40,21,0],[0,40,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,0,1,1,1,1,0,0,0,0,0,40,0,0,0,0,40,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40] >;
50 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 5 | 8A | ··· | 8H | 8I | ··· | 8T | 10A | 10B | 10C | 10D | 10E | 20A | 20B | 20C | 20D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 8 | ··· | 8 | 8 | ··· | 8 | 10 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 10 | 10 | 2 | 2 | 2 | 2 | 5 | 5 | 5 | 5 | 10 | 10 | 10 | 10 | 4 | 5 | ··· | 5 | 10 | ··· | 10 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | - | + | ||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | C8 | D4 | C4○D4 | C8○D4 | F5 | C2×F5 | C2×F5 | D5⋊C8 | D4.F5 | D4×F5 |
kernel | C5⋊C8⋊8D4 | C4×C5⋊C8 | D10⋊C8 | Dic5⋊C8 | C23.2F5 | Dic5⋊4D4 | C2×D5⋊C8 | C22×C5⋊C8 | C10.D4 | D10⋊C4 | C5×C22⋊C4 | C2×C5⋊D4 | C5⋊D4 | C5⋊C8 | Dic5 | C10 | C22⋊C4 | C2×C4 | C23 | C22 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 16 | 2 | 2 | 4 | 1 | 2 | 1 | 4 | 1 | 1 |
In GAP, Magma, Sage, TeX
C_5\rtimes C_8\rtimes_8D_4
% in TeX
G:=Group("C5:C8:8D4");
// GroupNames label
G:=SmallGroup(320,1030);
// by ID
G=gap.SmallGroup(320,1030);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,219,184,136,6278,1595]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^8=c^4=d^2=1,b*a*b^-1=a^3,c*a*c^-1=a^-1,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations